期刊文献+

人类活体髋关节的动态应力评估(英文) 被引量:3

Human hip stress evaluations in vivo at dynamic cases
下载PDF
导出
摘要 目的评估活体人髋关节的应力水平状态,为临床应用提供理论依据。方法基于德国柏林大学生物力学实验室所采集的活体人髋关节数据库,应用赫兹弹性理论,分析活体人髋关节在最经常的8种人类活动中(慢速步行、中速步行、快速步行、屈膝、上楼梯、下楼梯、起立、坐下等),髋关节的应力水平状态。结果(1)依照以上活动顺序,最大应力峰值依次为:11.25MPa,11.38MPa,11.89MPa,10.32MPa,11.66MPa,11.63MPa,10.37MPa,10.29MPa;最小应力峰值依次为:5.32MPa,5.77MPa,6.54MPa,7.40MPa,5.96MPa,6.41MPa,6.00MPa,5.56MPa;(2)依照以上活动顺序,平均应力峰值依次为:8.72MPa,8.95MPa,9.63MPa,8.70MPa,8.83MPa,9.23MPa,8.01MPa,7.77MPa。结论(1)活体人髋关节在这8种日常活动中的峰值应力介于5.32MPa与11.89MPa之间;(2)平均应力为8.72MPa;(3)人类在快速步行过程中,髋关节具有较大的峰值应力。 Objectives To evaluate the hip stress status in vivo in order to serve for clinic. Methods Based on gait database of the human hip in vivo collected by Biomechanics Lab of Berlin University and Hertzian elasticity contact theory, a realistic stress level analysis for dynamic cases at hip joint(including: walking slowly, walking normal, walking fast, knee bend, going up stairs, going down stairs, standing up and sitting down activities) is presented. Results The maximum peak stress for the human eight routine activities is 11.25 MPa, 11.38 MPa, 11.89 MPa, 10.32 MPa, 11.66 MPa, 11.63 MPa, 10.37 MPa, 10.29 Mpa respectively; The minimum peak stress for the human eight routine activities is 5.32 MPa, 5.77 MPa, 6.54 MPa, 7.40 MPa, 5.96 MPa, 6.41 MPa, 6.00 MPa, 5.56 MPa respectively. The average peak stress is 8.75 MPa, 8.95 MPa, 9.63 MPa, 8.70 MPa, 8.83 MPa, 9.23 MPa, 8.01 MPa, 7.77 MPa. Conclusions (1) The peak stresses in human routine activities range from 5.32 MPa to 11.89 MPa; (2) The general average peak stress in the human routine activities is 8.72 MPa; (3) The peak stress distributions have a double peak curve for walking cases, and there exist the peak stress for the walking fast case.
出处 《医用生物力学》 EI CAS CSCD 2005年第2期91-96,共6页 Journal of Medical Biomechanics
基金 山东省自然科学基金资助(NO.Y2003CO1)
关键词 髋关节 应力水平 峰值应力 人类日常活动 Hip stress analysis Stress level Peak stress Human routine activities
  • 相关文献

参考文献13

  • 1Hamacher P, RSsler H. Belastungsdiagramme bei Huftgelenks-erkrankungen[J]. Z Orthop, 1974,112:176-186.
  • 2Legal H, Reinecke M, Ruder H. Zur biostatischen analyse des Huftgelenks Ⅲ[J]. Z Orthop, 1980,118:804-815.
  • 3Antolie V, Kralj-Iglie V, Iglie A, et al. Legg-Calve-Perthes disease - stress distribution on the hip joint articular surface after varisation osteotomy. In: Held KD, Brebbia CA, Ciskowski RD, et al. (eds) Computational biomedicine[M]. Computational Mechanics Publications, Southamoton, 1993, 255-262.
  • 4Brinekmann P,Frobin W,Hierholzer E.Stress on the articular surface of the hip joint in healthy adults and persons with idiopathic osteoarthrosis of the hip joint[J]. J Biomech, 1981,14:149-156.
  • 5Genda E, Konishi N, Hasegawa Y, et al. A computer simulation study of normal and abnormal hip joint contact pressure[J]. Arch Orthop Trauma Surg, 1995,114:202-206.
  • 6Hipp JA, Sugano N, MiUis MB, Murphy SB. Planning acetabular redirection osteotomies based on joint contact pressures[J]. Clin Orthop, 1999,364:134-143.
  • 7Iglie A, Kralj-Iglie V, Antolie V, et al. Effect of the periacetabular osteotomy on the stress on the human hip joint articular sur face[J]. IEEE Trans Rehab Eng, 1993,1:207-212.
  • 8Ipavec M, Brand RA, Pedersen DR, et al. Mathematical modelling of stress in the hip during gait[J]. J Biomech, 1999.32:1229-1235.
  • 9Mavcic B, Antolic V, Brand R, et al. Peak contact stress in human hip during gait[J]. Pflugers Arch, 2000,440:R177-178.
  • 10Daniel M, Antolic V, Iglic A, et al. Determination of contact hip stress from nomograms based on mathematical model[J]. Med Eng Phys, 2001,23:347-357.

同被引文献39

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部