期刊文献+

求解箱约束变分不等式的不精确LM-型算法

Inexact LM-Methods for Solving Box Constrained Variational Inequalities
下载PDF
导出
摘要 利用箱约束变分不等式VI(a,b,F)的NCP-函数,提出求解VI(a,b,F)的不精确Lev-enberg-Marquardt型算法.每次迭代只需求线性方程组的一个近似解,算法仍具有全局收敛性.无需假设极限点x*是否退化,在BD-正则的条件下,算法局部超线性(二次)收敛.最后给出数值试验结果. Based on a new NCP-function for the box constrained variational inequality problems VI(a,b,F),a nonsmooth inexact Newton method for solving VI(a,b,F) is developed.Requiring only the approximate solution of a linear system at each iteration, the algorithm is shown to be global convergence.Under BD-regularity,the method has a superlinear/quadratic convergence rate whether the limit of point x~* is degenerate or not.Finally,the numerical results are reported.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期373-378,共6页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金(19701016) 高等学校骨干教师资助计划资助
关键词 箱约束变分不等式 不精确Levenberg—Marquardt型算法 半光滑 box constrained variational inequalities inexact Levenberg-Marquardt method semismoothness
  • 相关文献

参考文献14

  • 1Harker P T, Pang J S.Finite-dimensional variational inequality and complementarity problems: A survey of theory, algorithms and applications [J].Mathematical Programming,1990,48(1):161~220.
  • 2Ferris M C, Pang J S.Engineering and economic applications of complementarity problems [J].SIAM Review,1997,39:669~713.
  • 3陈国庆,曹兵.箱约束变分不等式的一种新NCP-函数及其广义牛顿法[J].计算数学,2002,24(1):91-104. 被引量:17
  • 4Sun D, Womersley R S.A new unconstrained differentiable merit function for box constrained variational inequality problems and a damped Guass-Newton method [J].SIAM Journal on Optimization,1999,9(2):388~413.
  • 5Qi L, Sun D, Zhou G. A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities [J].Mathematical Programming,2000,88(1):1~35.
  • 6Qi H.A regularized smoothing Newton method for box constrained variational inequality problems with P0-functions [J].SIAM Journal on Optimization,1999,10(2):315~330.
  • 7Ravindran G, Gowda M S.Regularization of P0-functions in box variational inequality broblems [J].SIAM Journal on Optimization,2000,11(3):748~760.
  • 8Clarke F H.Optimization and Nonsmooth Analysis [M]. John Wiley, New York, 1983.
  • 9Qi L, Sun J.A nonsmooth version of Newton′s method [J].Mathematical Programming,1993,58(1):353~367.
  • 10More J J, Rheinbolt W C.On P- and S-function and related class of n-dimensional nonlinear mapping [J].Linear Algibra Applications,1972,6(1):46~68.

二级参考文献18

  • 1Fischer, A.. Solution of monotone complementarity problems with locallyLipschitzian functions.Math. Prog. , 1997, 76(3):513-532
  • 2Clarke, F.H.. Optimization and Nonsmooth Analysis. New York: Wiley, 1983
  • 3Qi, L.. Convergence analysis of some algorithms for solving nonsmooth equations.Mathematics of Operations Research, 1993, 18(1) :227-244
  • 4Pang, J.S. and Qi, L.. Nonsmooth equations: Motivation and algorithms. SIAM J.Optim. ,1993,3(2): 443-465
  • 5Qi, L. and Sun, J.. A nonsmooth version of Newton's method. Math. Programming,1993, 58 (3):353-367
  • 6Sun, D. and Womersley, R.S.. A newunconstrained differentiable merit function for box constrained variational inequalityproblems and a damped Gauss-Newton method. SIAM J. Optim. ,1999, 9(2):388-413
  • 7Hou, D.Q.. A regularized smoothing Newton method for box constrained varialtionalinequality problems with Po-functions. SIAM J. Optim. , 1999, 10(2):315-330
  • 8Chen, X. , Qi, L. and Sun, D.. Global and superlinear convergence of the smoothingNewton method and its application to general box constrained variational inequalities.Math. Comp. ,1998, 67(222):519-540
  • 9Nobuo Yamashita,Masao Fukushima. Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems[J] 1997,Mathematical Programming(3):469~491
  • 10Francisco Facchinei,Christian Kanzow. A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems[J] 1997,Mathematical Programming(3):493~512

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部