摘要
利用箱约束变分不等式VI(a,b,F)的NCP-函数,提出求解VI(a,b,F)的不精确Lev-enberg-Marquardt型算法.每次迭代只需求线性方程组的一个近似解,算法仍具有全局收敛性.无需假设极限点x*是否退化,在BD-正则的条件下,算法局部超线性(二次)收敛.最后给出数值试验结果.
Based on a new NCP-function for the box constrained variational inequality problems VI(a,b,F),a nonsmooth inexact Newton method for solving VI(a,b,F) is developed.Requiring only the approximate solution of a linear system at each iteration, the algorithm is shown to be global convergence.Under BD-regularity,the method has a superlinear/quadratic convergence rate whether the limit of point x~* is degenerate or not.Finally,the numerical results are reported.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第4期373-378,共6页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金(19701016)
高等学校骨干教师资助计划资助