期刊文献+

损伤检测的经验模态分解法 被引量:8

Damage detection using empirical mode decomposition
下载PDF
导出
摘要 用经验模态分解法对几种典型信号的特征进行分析.首先分解出内在模态函数分量,再对模态函数进行希尔伯特变换,得到时频图,由模态分量中突变点的位置来识别损伤发生的时间,而由时频图识别频率的变化.对一单自由度系统在刚度突变和累积疲劳引起的缓慢变化两种情况进行了分析,根据时频图中频率的变化识别出刚度发生突变的时刻及刚度变化的过程和损伤程度.结果表明经验模态分解法是进行损伤检测和时变参数识别比较理想的方法之一. Several representative signals are analyzed by empirical mode decomposition (HMD) method. The intrinsic mode functions (IMF) are obtained by EMD, and the Hilbert transformation is applied to each intrinsic mode function and time-frequency spectrum is obtained. The damage moment can be detected by the abrupt change in the IMF and the change of frequency can be identified by the time-frequency spectrum. A single degree of freedom suffering from abrupt damage and accumulative damage is studied. The damage moment and change process of stiffness and the damage degree can be estimated by the frequency change in the time-frequency spectrum. The result shows that EMD is one of the effective methods to detect damage and identify time-varying parameters.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2005年第3期401-404,共4页 Journal of Dalian University of Technology
基金 辽宁省博士启动基金资助项目(2001102094) 国家自然科学基金资助项目(重点项目50439010) 国家自然科学基金资助项目(面上项目50378012).
关键词 经验模态分解法 损伤检测 希尔伯特变换 单自由度系统 时变参数识别 模态函数 刚度突变 损伤程度 刚度变化 时频 突变点 分量 频率 Engineering Identification (control systems) Inspection Measurements Stiffness Structures (built objects)
  • 相关文献

参考文献16

  • 1LIEW K M,WANG Q. Application of wavelet theory for crack identification in structures [J]. J Eng Mech, 1998, 124(2): 152-157.
  • 2KITADA Y. Identification of nonlinear structural dynamic systems using wavelets [J]. J Eng Mech, 1998, 124(10): 1059-1066.
  • 3PAN T C, LEE C L. Application of wavelet theory to identify yielding in seismic response of bi-linear structures [J]. Earthquake Eng and Struct Dyn, 2002, 31(2): 379-398.
  • 4HOU Z, NOORI M, AMAND R St. Wavelet-based approach for structural damage detection [J]. J Eng Mech, 2000, 126(7): 677-683.
  • 5HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc Lond, 1998, A454: 903-995.
  • 6YANG J N, LEI Y, PAN S, et al. System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: Normal modes [J]. Earthquake Eng and Struct Dyn, 2003, 32(9): 1443-1467.
  • 7YANG J N, LEI Y, PAN S, et al. System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: Complex modes [J]. Earthquake Eng and Struct Dyn, 2003, 32(10): 1533-1554.
  • 8续秀忠,李中付,华宏星,陈兆能.非平稳环境激励下线性结构在线模态参数辨识[J].上海交通大学学报,2003,37(1):118-121. 被引量:3
  • 9李中付,华宏星,宋汉文,陈之炎.非稳态环境激励下线性结构的模态参数辨识[J].振动工程学报,2002,15(2):139-143. 被引量:20
  • 10LIEW K M,WANG Q. Application of wavelet theory for crack identification in structures [J]. J Eng Mech, 1998, 124(2): 152-157.

二级参考文献7

  • 1盛骤 谢式千.概率论与数理统计[M].北京:高等教育出版社,1989.189-194.
  • 2李中付 宋汉文 等.基于环境激励的模态参数识别方法综述[J].振动工程学报,2000,13:578-585.
  • 3Rume B. Modal identification from ambient responses using frequency domain decomposition[A]: Deuschle P, Ramsay K M. Proceeding of the 18th IMAC[C].Texas: SEM, 2000. 625- 630.
  • 4Barney P, Carne T. Modal parameter extraction using nature excitation response data[A]. MacDonald K L,Ramsay K M. Proceeding of the 17th IMAC [C].Florida: SEM, 1999. 49-55.
  • 5Albert B. Polyreference version of subspace algorithms for output only structural identification [A].Deuschle P, Ramsay K M. Proceeding of the 18th IMAC[C]. Texas: SEM, 2000. 620-624.
  • 6Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonline and nonstationary time series analysis[A]. Johnson G A, Pate J W. Proceeding of Royal Society[C]. London: The Royal Society, 1998. 903-995.
  • 7Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum [J]. Annu Rev Fluid Mech, 1999, 31:417-457.

共引文献21

同被引文献36

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部