摘要
阐述了支持向量机的理论研究进程、基本原理和主要算法,并与神经网络进行了对比;介绍了支持向量机在油田生产中的应用概况.结果表明,支持向量机具有神经网络所不具备的独特优点,为解决非线性问题提供了一个新思路,是人工神经网络的替代方法.
This paper introduces the theoretical research process of SVM, the basic principles, and the main algorithms, and it is compared with the neural network. The application of the SVM in oil fields is described The result illustrates that SVM has unique excellence that Neural Network does not possess. SVM offers a new way to solve the non-linear problem, and it is delieved to be the substitute for the Neural Network.
出处
《大庆石油学院学报》
CAS
北大核心
2005年第3期77-79,82,126,共5页
Journal of Daqing Petroleum Institute