期刊文献+

支持向量机及其在油田生产中的应用 被引量:7

Supportive vector machine and its application in oil fields
下载PDF
导出
摘要 阐述了支持向量机的理论研究进程、基本原理和主要算法,并与神经网络进行了对比;介绍了支持向量机在油田生产中的应用概况.结果表明,支持向量机具有神经网络所不具备的独特优点,为解决非线性问题提供了一个新思路,是人工神经网络的替代方法. This paper introduces the theoretical research process of SVM, the basic principles, and the main algorithms, and it is compared with the neural network. The application of the SVM in oil fields is described The result illustrates that SVM has unique excellence that Neural Network does not possess. SVM offers a new way to solve the non-linear problem, and it is delieved to be the substitute for the Neural Network.
出处 《大庆石油学院学报》 CAS 北大核心 2005年第3期77-79,82,126,共5页 Journal of Daqing Petroleum Institute
关键词 统计学习理论 支持向量机 神经网络 statistical learning theory SVM Neural Network
  • 相关文献

参考文献17

  • 1vapnikVN 许建华 张学工.统计学习理论[M].北京:电子工业出版社,2004..
  • 2Mangasarian D L, Musicant D R. Successive over relaxation for support vector machines[J]. IEEE Trans. Neural Networks, 1999,10(5):1032-1037.
  • 3Scholkopf B, Smola A, Williamson R C, et al. New support vector algorithms[J]. Neural Computation, 2000,12(5): 1207-1245.
  • 4Chang Chih-Chung, Lin Chih-Jen. Training V support vector classifiers: theory and algorithms[J]. Neural Computation, 2001,13(9):2119-2147.
  • 5Scholkopf B, Plat J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation,2001,13(7):1443-1471.
  • 6I.in Kuan-Ming, Kao W.Sun C L, et al. Radius margin bounds for support vector machines with the RBF kernel[J]. Neural Computation, 2003,12(6):1288-1298.
  • 7Lin Chun-Fu, Wang Sheng-De. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002,13(2):464-471.
  • 8Chew Hong-Gunn, Bogner Robert E, Lim Cheng-Chew. Dual nu-support vector machine with error rate and training size biasing[A].Proceedings of 26th IEEE ICASSP[C]. Salt Lake: 2001.1269-1272.
  • 9Suykens J, Vandewalle J. Least square support vector machine classifiers[J]. Neural Processing Letters, 1999,9(3):293-300.
  • 10Suykens J, Branbanter J D, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation[J]. Neuroeomputing, 2002,48(1):85-105.

二级参考文献40

共引文献74

同被引文献48

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部