期刊文献+

一类退缩抛物型偏微分方程组解的加权L_1模的有界性及爆破性

Blow-up and boundedness in a weighted norm to the solutions of a degenerate system of parabolic equations
下载PDF
导出
摘要 利用Laplace方程第一特征值及特征函数,定义了可积函数的加权模并用之研究了所讨论的具退缩性或奇性非线性反应-扩散方程组非负解的爆破性和全局有界性. This article deals with a system of nonlinear reaction-diffusion equations with degeneracy or singularities by using the first eigenvalue and the corresponding eigenfunction to the Laplacian equation. It is shown that if the nonlinear terms in the system grow fast, the solution will blow up in a finite time and if the nonlinear terms in the system grow in a reasonable speed, the solution will be bounded in any finite time.
出处 《大庆石油学院学报》 CAS 北大核心 2005年第3期90-93,127,共5页 Journal of Daqing Petroleum Institute
关键词 反应扩散 方程组 爆破性 有界性 初边值 reaction-diffusion system of equations blow-up boundedness initial BVP
  • 相关文献

参考文献4

  • 1FiloJ, KacurJ. Local existence of general nonlinear parabolic systems, Nonlinear Anal [J]. TMA, 1995,24(11):1597-1618.
  • 2Jong U K. Smooth solutions to a quasilinear system of diffusion equations for a certain population model, Nonlinear Anal [J]. TMA,1984,8(10):1121-1144.
  • 3Yagi A. Global solution to ,some quasilinear parabolic system in population dynamics, Nonlinear Anal [J]. TMA, 1993,21(8):603-630.
  • 4Yamada Y. Global solutions for quasilinear parabolic systems with cross-diffusion effects, Nonlinear Anal [J]. TMA, 1995,24(9):1395-1412.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部