摘要
利用Laplace方程第一特征值及特征函数,定义了可积函数的加权模并用之研究了所讨论的具退缩性或奇性非线性反应-扩散方程组非负解的爆破性和全局有界性.
This article deals with a system of nonlinear reaction-diffusion equations with degeneracy or singularities by using the first eigenvalue and the corresponding eigenfunction to the Laplacian equation. It is shown that if the nonlinear terms in the system grow fast, the solution will blow up in a finite time and if the nonlinear terms in the system grow in a reasonable speed, the solution will be bounded in any finite time.
出处
《大庆石油学院学报》
CAS
北大核心
2005年第3期90-93,127,共5页
Journal of Daqing Petroleum Institute
关键词
反应扩散
方程组
爆破性
有界性
初边值
reaction-diffusion
system of equations
blow-up
boundedness
initial BVP