期刊文献+

基于支持向量机的飞机备件需求预测 被引量:30

Requirement Prediction of Aircraft Spare Parts based on Support Vector Machines
下载PDF
导出
摘要 支持向量机是一种机器学习算法,在国外已广泛应用于工程实践领域。首先探讨了支持向量机回归预测模型的学习和预测机制,分析其中三个重要参数对算法的影响规律,得出一套定性的参数选择方法,然后将支持向量机引入到装备综合保障分析之中,构建了飞机备件智能预测模型,并对某型军用飞机备件需求进行了预测和分析,结果表明:基于支持向量机的备件需求预测是有效的、可行的。 Support Vector Machines(SVMs)is an algorithm of machine learning,which was widely used in many fields abroad.Firstly,the algorithms of learning and prediction were discussed in the paper.Secondly,the influence of three important parameters in SVMs was analyzed and a qualitative method was proposed on how to choose the parameters.Then SVMs was used in equipments logistic support analysis,and an aircraft spares prediction model was proposed,by which,we estimated spares provision of an aircraft.Lastly,the simulation results proved the effectiveness of SVMs.
出处 《火力与指挥控制》 CSCD 北大核心 2005年第3期78-80,83,共4页 Fire Control & Command Control
基金 空军重点型号工程资助项目(HX02105)
关键词 支持向量机 机器学习 预测 备件 support vector machines,machine learning,prediction,spares
  • 相关文献

参考文献4

  • 1Stitson M O, Weston J A E,Gammerman A,et al.Theory of Support Vector Machines [R]. Technical Report CSD-TD-96-17 [R]. Royal Holloway,University of London 1996.
  • 2Scholkopf B, Bartlett P, Smola A, et al. Support Vectdr Regression with Automatic Accuracy Control [A].Proceedings of the 8th International Conference on Artificial Neural Networks,Perspectives in Computing[C], Berlin, Springer Verlag. 1998b : 111-166.
  • 3Muller K R,Smola A J, Ratsch G,et al. Predicting time series with support vector machines [A].editors,Artificial Neural Networks-ICANN'97[C].Springer, 1997 : 999-1004.
  • 4Zhu Jia-yuan, Ren Bo, Zhang Heng-xi, et al. Time Series Prediction Via New Support Vector Machines [A].In Proceedings of the First International Conference of Machine Learning and Cybernetics,ICMLC'2002[C], IEEE, Beijing : 2002:364-366.

同被引文献349

引证文献30

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部