期刊文献+

基于小波分析的点采样表面简化 被引量:1

Simplification of Point-Sampled Surfaces Based on Wavelet Analysis
下载PDF
导出
摘要 在对点采样表面进行小波分析的基础上,提出了2种新的点采样表面的简化方法.通过对目标表面的空间频率及信号能量进行控制,实现点采样表面的简化.方法一,通过对点采样信号进行低通滤波及降低采样率的方式对表面进行重采样;方法二,通过对点表面进行能量阈值化,对不同区域使用不同采样率的方式进行非均匀采样.实验表明,这2种方法能够分别在目标表面最高空间频率及最低信号能量准则下,实现点采样表面的有效简化.提出的点采样表面小波处理流程还可应用于点采样表面的几何压缩、特征检测与提取和点采样表面的编辑. Two new methods for simplification of point-sampled surfaces based on wavelet filtering are presented. The surface simplification is implemented through the control of maximum surface spacial frequency and minimum surface signal energy. The first method filters the surface by means of wavelet low-pass filter at first. Then it down-samples the surface according the low-pass cutting frequency. The second method simplifies surfaces by controlling surfaces energy and implementing non-uniform sampling. Experiments showed the methods could simplify the point-sampled surfaces directly and efficiently. The presented wavelet operating frame of point surfaces can also be applied to geometry compression, characteristic detection and extraction, editing of point cloud data.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第4期341-345,共5页 Transactions of Beijing Institute of Technology
基金 国家部委预研项目(1040403311)
关键词 表面简化 点采样 基于点的表示 小波分析 低通滤波 surface simplification point-sampled point-based representations wavelet analysis low-pass filtering
  • 相关文献

参考文献10

  • 1Levoy M, Whitted T. The use of points as a display primitive[R]. Chapel Hill: University of North Carolina, 1985.
  • 2Rusinkiewicz S, Levoy M. Qsplat: A multiresolution point rendering system for large meshes[A]. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH[C]. New Orleans, Louisana: ACM Press, 2000. 343-352.
  • 3Pfister H, Zwicker M, Baar J V, et al. Surfels: Surface elements as rendering primitives[A]. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH[C]. New Orleans, Louisana: ACM Press, 2000. 335-342.
  • 4Alexa M, Behr J, Cohen O D, et al. Point set surfaces[A]. Proceedings of the Conference on Visualization 2001[C]. San Diego, California: IEEE Computer Society, 2001. 21-28.
  • 5Linsen L. Point cloud representation[R]. Karlsruhe: Faculty of Computer Science, University of Karlsruhe, 2001.
  • 6Pauly M, Gross M, Kobbelt L P. Efficient simplification of point-sampled surfaces[A]. Proceedings of the Conference on Visualization 2002[C]. Boston, Massachusetts: IEEE Computer Society, 2002. 163-170.
  • 7Pauly M, Gross M. Spectral processing of point-sampled geometry[A]. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH[C]. Los Angeles, California: ACM Press, 2001. 379-386.
  • 8Grtner B. Fast and robust smallest enclosing balls[A]. Proceedings of the 7th Annual European Symposium on Algorithms (ESA), Lecture Notes in Computer Science 1643[C]. New York: Springer Verlag, 1999. 325-338.
  • 9Freeman H, Shapira R. Determining the minimal-area encasing rectangle for an arbitrary closed curve[J]. Communications of ACM, 1975, 18(7):409-413.
  • 10Sandwell D T. Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data[J]. Geophysical Research Letters, 1987, 14(2):139-142.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部