期刊文献+

一类双曲型积分微分问题有限元逼近的超收敛估计(英文) 被引量:3

Superconvergence of a Finite Element Method for a Kind of Hyperbolic Integro-differential Problems
下载PDF
导出
摘要 本文研究双曲型积分微分方程的半离散有限元逼近格式的超收敛估计。基于一种新的初值近似,得到了有限元解与精确解的Ritz-Volterra投影的Ws,p(Ω)模的如下超收敛估计:k>1,s=0,2≤p≤∞时,超收敛1阶;k>1,s=1,2≤p<∞时,超收敛2阶;k>1,s=1,p=∞时,几乎超收敛2阶;k=1,s:1,2≤p≤∞时,超收敛1阶。 In this paper, we study the superconvergence of a semi-discrete finite element scheme for hyperbolic integro-differential problems using any degree of elements. The scheme is based on introducing a new way of approximating initial conditions. We obtain several superconvergence results for the error between the approximate solution and the Ritz Volterra projection of the exact solution. For k > 1, we obtain first order gain in Lp (2 ≤ p ≤ ∞) norm, second order in W1,p(2 ≤ p < ∞) norm and almost second order in W1,∞ norm. For k = 1, we obtain first order gain in W1,p (2 ≤ p ≤ ∞) norm.
出处 《工程数学学报》 CSCD 北大核心 2005年第3期413-419,共7页 Chinese Journal of Engineering Mathematics
基金 Foundations for University Key Teacher by the Ministry of Educationthe Science Foundations for Young Teachers of North China Electric Power University.
关键词 超收敛 双曲型积分微分方程 有限元 superconvergence hyperbolic integro-differential equation finite element scheme
  • 相关文献

参考文献3

  • 1Kwak D Y, Lee S G, Li Q. Superconvergence of a finite element method for linear untego-differential problems[J]. Internat J. Math. and Math. Sci., 2000;23(5):343-359
  • 2Lin Y P, Thomee V, Wahlbin L B. Ritz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations[J]. SIAM J. Numer. Anal., 1991;28(4):1047-1070
  • 3Pani A K, Sinha P K. On superconvergence results and negative norm estimates for parabolic integrodifferential equations[J]. J. Integral Equations Appl., 1996;8(1):65-98

同被引文献16

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部