期刊文献+

热流传播速度的数学分析

The Mathematical Analysis for the Propagation of Heat Flow
下载PDF
导出
摘要 考虑满足Cattaneo-Vernotte定律的热传导,其热流传播速度是有限的,其温度分布函数满足一个双曲型方程。如果热传导满足Fourier实验定律,则热流传播速度是无穷大,这时温度分布函数满足热传导方程。本文在一维情形下证明当热流速度从有限趋于无限时,其对应的温度分布函数的一致收敛性,以及在多维情形下的L2强收敛性。 Considered in this paper is a heat flow which satisfys the Cattaneo-Vernotte Law, the propagation velocity of heat flow is finite, and its temperature distribution satisfies a hyperbolic equation. If the propagation of heat flow obeys Fourier law, then the propagation velocity of heat flow is infinite, in this case its temperature distribution satisfies a parabolic equation. In one dimensional case it is proved that the solutions of hyperbolic equations converge uniformly to the solution of parabolic equation when the propagation velocity of heat flow goes to infinity.
作者 易佳婷 王石
出处 《工程数学学报》 CSCD 北大核心 2005年第3期531-535,共5页 Chinese Journal of Engineering Mathematics
关键词 热传导 温度分布函数 一致收敛性 heat propagation temperature distribution uniform convergency
  • 相关文献

参考文献4

  • 1Polesek-Karczewska S. Effective thermal conductivity of packed beds of spheres on transient heat transfer[J].Heat and Mass Transfer, 2003;39:375-380
  • 2Friedman A, Hu B. The Stefan problem for a hyperbolic heat equation[J]. J Math Anal Appl, 1989;138:249-279
  • 3Li D. The well-posedness of a hyperbolic Stefan problem[J]. Quart. Appl Math, XLⅦ 1989;221-231
  • 4Shemetov N V. Existence and stability results for the hyperbolic Stefan Problem with relaxation[J]. Ann Mat Pura Appl, CLXⅧ 1995;301-316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部