期刊文献+

基于统计信息的两类盲信号分离方法之比较 被引量:1

下载PDF
导出
摘要 盲源分离是一种具有良好应用前景的信号处理技术。本文介绍了两类在生物医学领域应用广泛的基于信号统计信息的盲分离方法的基本原理,即基于二阶统计信息的盲源分离方法和基于高阶统计的独立元分析,并进行比较,论其利弊。
出处 《医学信息(西安上半月)》 2005年第6期587-589,共3页 Medical Information
  • 相关文献

参考文献14

  • 1Jutten C, Herault J. Blind separation of source, part I: An adaptive algorithm based on neuromlmetic architecture [J] Signal Processing, 1991,24:1-10.
  • 2Common P. Independent component analysis, a new concept? [J].Signal Processing, 1994,36:287-314.
  • 3A J Bell, T J Sejnowski. An information-maximisation approach to blind separation and blind deconvolution [J]. Neural Computation,1995,7:1129-1159.
  • 4S, Amari. Natural gradient works effciently in learning [J]. Neural Computation, 1998,10(2):251-276.
  • 5J F Cardoso, B H Laheld. Equivariant adaptive source separation [J]. IEEE Trans. Signal Process, 1996,44(12):3017-3030.
  • 6A Souloumiac. Blind source detection and separation using secondordvr nonstationarity [A]. In Proc. ICASSP [C]. 1995, 1912-1915.
  • 7Adel B, Karin A M , Cardoso J F, et al. A blind source separation technique using second-order statistics [ J ]. IEEE Trans on Signal Processing, 1997, 45(2): 434-444.
  • 8Hyvarinen A, Oja E. Independent Component Analysis: Algorithms and Applications. Neural Networks, 2002, 13:411-430.
  • 9Aapo Hyvarinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis [J]. IEEE Transactions on neurad networks, 1999,10(3).
  • 10Lee TW. Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussiansources [J]. Neural Computation, 1999,11(2):409-433.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部