期刊文献+

换热板形状对平板型吸收器传热性能的影响 被引量:2

EFFECTS OF DIFFERENT GEOMETRIC CONFIGURATIONS OF HEAT TRANSFER PLATE ON HEAT TRANSFER CHARACTERISTIC OF PLATE-TYPE ABSORBER
下载PDF
导出
摘要 主要针对换热板溶液侧的几何形状对吸收器性能的影响进行实验研究。在相同的条件下以光滑平板为比较对象,对开有纵向沟槽和横向沟槽(翅片)的各种换热板进行了比较实验。实验结果表明,在实验的条件范围内,开有宽度为1mm的纵向沟槽换热板的性能较好,在液膜雷诺数为75时其传热系数是光滑板的1.44倍。 This investigation was mainly focus on the effects of geometric configurations of heat transfer plate on the performance of absorber. For a plate-type absorber with different geometric configurations of heat transfer plate (bare, finned, and grooved), experiments were conducted for the solution film Reynolds numbers of 20-150, at a constant concentration of strong solution of 62 wt% at the entrance of absorber. Among different geometric shapes of heat transfer plate, 1 mm vertical grooved plate showed its advantageous performance in present study. The heat transfer coefficient of this kind plate was 1.44 times of that of bare plate at solution film Reynolds Number 75.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2005年第2期294-298,共5页 Acta Energiae Solaris Sinica
关键词 吸收 传热 平板型 溴化锂 Absorption Heat transfer Lithium compounds Reynolds number Solar energy Test facilities
  • 相关文献

参考文献5

  • 1Medrano M, Bourouis M, Coronas A. Absorption of water vapour in the falling film of water- lithium bromide inside a vertical tube at air-cooling thermal conditions[ J ]. International Journal of Thermal Sciences, 2002;41: 891-898.
  • 2Kim B J, Kang I S. Absorption of water- vapor into wavy-laminar falling film of aqueous lithium bromide [ J ].KSME Int J,1995, 9: 115-122.
  • 3Takamatsu H, Yamashiro H, Takata N, et al. Vapor absorption by LiBr aqueous solution in vertical smooth tubes [J]. Int J Refrig,2003, 26: 659-666.
  • 4Fujita I, Hihara E. Heat/mass transfer coefficients of an absorber in absorption refrigeration system [ J ]. Trans JSRAE 2000, 17: 203-212.
  • 5植田辰洋.气液二相流[M].养贤堂,1981.114-116.

同被引文献22

  • 1杜斌,施明恒.太阳能平板降膜再生过程的数值模拟[J].东南大学学报(自然科学版),2005,35(6):903-906. 被引量:4
  • 2何开岩,郑宏飞,赵华,陈子乾.多效回热降膜蒸发式太阳能液体除湿空调溶液再生器的稳态实验[J].太阳能学报,2006,27(9):885-889. 被引量:3
  • 3Kesslling W, Laevemann E, Kapfhammer C. Energy storage for desiccant cooling systems component development [J]. Solar Energy, 1998, 64(4-6): 209-221.
  • 4DaouK, Wang RZ, XiaZZ. Desiccant cooling air conditioning: a review [J]. Renewable and Sustainable Energy Reviews, 2006, 10(2): 55-77.
  • 5Yang R, Wang P L. Experimental study for a double-glazed forced-flow solar collector/regenerator[J]. Journal of Solar Energy Engineering, 1998, 120(4): 253-259.
  • 6Lychnos G, Davies P A. Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates[J].Energy, 2012, 40(1): 116-130.
  • 7Audah N, Ghaddar N, Ghali K. Optimized sola: powered liquid desiccant system to supply building fresh water and cooling needs [J]. Applied Energy, 2011, 88 (11) : 3726-3736.
  • 8Zeidan E B, Aly A A, Hamed A M. Modeling and simulation of solar-powered liquid desiccant regenerator for open absorption cooling cycle [J]. Solar Energy, 2011, 85(11): 2977-2986.
  • 9Qi R H, Lu L, Yang H X. Investigation on air- conditioning load profile and energy consumption of desiccant cooling system for commercial buildings in Hong Kong [J]. Energy and Buildings, 2012, 49:509 -518.
  • 10Peng D G, Zhang X S. Modeling and simulation of solar collector/regenerator for liquid desiccant cooling systems [J]. Energy, 2011, 36(5): 2543-2550.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部