期刊文献+

偏心高斯光束的强度分布 被引量:3

The intensity distribution of decentered Gaussian beam
下载PDF
导出
摘要  根据Collins公式得到了离轴高斯光束通过光学系统后的变换关系,分析了变换后光束强度分布的特点,结果表明变换后的光束为偏心高斯光束,进而导出了偏心高斯光束在垂直于传输方向上强度分布的近似表达式.最后以薄透镜系统为例,数值计算了该方向上的强度分布;以及不同位置处,偏心高斯光束与高斯光束强度分布的偏离程度,表明束腰平面上强度分布为高斯分布,随着考察面到束腰平面距离的增大,此偏离程度迅速变大. The transmitted relation is deduced based on Gaussian beam passing through optics system,and intensity distribution of transmitted beams is analyzed,the results show that the intensity distribution of transmitted beams is decentered Gaussian beam,approximate analytical intensity distribution equations of decentered Gaussian beam is derived.For the optics system of thin convex lens,intensity distribution is numerical simulation;and departure degree of different position of Gaussian beam and decentered Gaussian beam are calculated,the results show that the intensity distribution is Gaussian beam on the beam waist plane,and the departure degree becomes increasing as long as the distance to beam waist position increasing.
出处 《西安工业学院学报》 2005年第1期76-79,共4页 Journal of Xi'an Institute of Technology
基金 国防科技重点实验室基金项目 (51 456 0 50 1 0 4DZ0 1 0 1 )
关键词 偏心高斯光束 高斯光束 光学系统 光强分布 decentered gaussian beams gaussian beams optical system intensity distribution
  • 相关文献

参考文献6

二级参考文献11

  • 1Abdul-Azeez,Al-Rashed R,Saleh Bahaa E A.Decentered Gaussian beams.Appl Opt, 1995,34(30):6819-6825
  • 2Claudio Palma. Decentered Gaussian beams, ray bundles, and Bessel-Gaussian beams.Appl Opt,1997,36(6):1116-1120
  • 3Collins S A. Lens-system diffraction integral written in terms of matrix optics[J]. J O S A, 1970, 60(9):1168.
  • 4Bagini V, Borghi R, Gori F. Propagation of axially symmetric flattened Gaussian beams[J]. J O S A, 1996, 13(7):1385-1394.
  • 5Li Y J. Degeneracy in the Franhofer diffraction of truncated Gaussian beams[J]. J O S A,1987, 4(7):1237-1242.
  • 6Ibnchaikh M, Belafhal A.The ABCD-Hankel transformation in two-dimensional frequency-domain with polar coordinates[J]. Phy Chem News, 2001, 2(1):29-34.
  • 7Gori F. Flattened gaussian beams[J]. Opt Commun, 1994, 107(5-6):335-341.
  • 8周昕,刘馨,黄援朝.高斯光束的偏心分布[J].激光杂志,1998,19(6):36-38. 被引量:5
  • 9沈学举,王斧,刘秉琦,张雏.偏心椭圆高斯光束[J].中国激光,1999,26(2):171-175. 被引量:3
  • 10王喜庆,梁国栋,吕百达.高斯光束通过有硬边光阑ABCD光学系统的近似解析传输公式[J].强激光与粒子束,2001,13(4):418-422. 被引量:17

共引文献20

同被引文献17

  • 1苑立波.光源与纤端光场[J].光通信技术,1994,18(1):54-56. 被引量:40
  • 2Fan T Y. Laser benm combining for high power, high radiance sources [J]. IEEE Journal of Selected Topics in Quant Electronics(S1077-260X), 2005, 11(3): 567-577.
  • 3Khajavikhan M, Hoyerleitzel A, Leger J R. Efficient conversion of light from sparse laser arrays into single-lobed far fieldusing phase structures [J]. Opt. Left (S0146-9592), 2008, 33(20): 2377-2379.
  • 4Claudio Palma. Decentered Gaussian beams, ray bundles, and Bessel-Gaussian beams (J]. Applied Optics(S0003-6935), 1997, 36(6): 1116-1120.
  • 5Galdi V, Felsen L B and Castafion D A. Narrow-Waisted Gaussian Beam Discretization for Short-Pulse Radiation From One-Dimensional Large Apertures [J]. IEEE Trans. Antennas Propagat. , 2001, 49:1322-1332.
  • 6Galdi V, Felsen L B and Castanon D A. Time-Domain Radiation From large Two-Dimension Apertures via Narrow-Waisted Gaussian Beams [J]. IEEE Trans. Antennas Propagat., 2003, 51:78-88.
  • 7Wen J J, Breazeale M A. A Diffraction Beam Field Expressed as the Superposition of Gaussian Beams[J]. J Acoust Soc Am, 1988, 83:1752-1756.
  • 8Huang Dehua, Breazeale M A. A Gaussian Finite-Element Method for Description of Sound Diffraction[J]. J Acoust Soc Am, 1999,106 : 1771-1781.
  • 9Ding Desheng, Zhang Yu and Liu Jinqiu. Some Extensions of the Gaussian Beam Expansion: Radiation Fields of the Rectangular and the Elliptical Transducer[J]. J. Acoust. Soc. Am. , 2004, 116(3):1401-1405.
  • 10CHEN Jiannong, MA Qiuming, David Selviah, XU Qiang. Restoration of Decentered Gaussian Beam with the Combination of a Lens and a Gaussian Aperture[J], Chinese Journal of Lasers, 2002, B11: 267-272.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部