摘要
In this paper, illumination-affine invariant methods are presented based onaffine moment normalization techniques, Zernike moments, and multiband correlation functions. Themethods are suitable for the illumination invariant recognition of 3D color texture. Complex valuedmoments (i.e., Zernike moments) and affine moment normalization are used in the derivation ofillumination affine invariants where the real valued affine moment invariants fail to provide affineinvariants that are independent of illumination changes. Three different moment normalizationmethods have been used, two of which are based on affine moment normalization technique and thethird is based on reducing the affine transformation to a Euclidian transform. It is shown that fora change of illumination and orientation, the affinely normalized Zernike moment matrices arerelated by a linear transform. Experimental results are obtained in two tests: the first is usedwith textures of outdoor scenes while the second is performed on the well-known CUReT texturedatabase. Both tests show high recognition efficiency of the proposed recognition methods.
In this paper, illumination-affine invariant methods are presented based onaffine moment normalization techniques, Zernike moments, and multiband correlation functions. Themethods are suitable for the illumination invariant recognition of 3D color texture. Complex valuedmoments (i.e., Zernike moments) and affine moment normalization are used in the derivation ofillumination affine invariants where the real valued affine moment invariants fail to provide affineinvariants that are independent of illumination changes. Three different moment normalizationmethods have been used, two of which are based on affine moment normalization technique and thethird is based on reducing the affine transformation to a Euclidian transform. It is shown that fora change of illumination and orientation, the affinely normalized Zernike moment matrices arerelated by a linear transform. Experimental results are obtained in two tests: the first is usedwith textures of outdoor scenes while the second is performed on the well-known CUReT texturedatabase. Both tests show high recognition efficiency of the proposed recognition methods.
基金
Sino-French Program of Advanced Research under,上海市科委资助项目