摘要
利用拉格朗日乘子法将约束优化设计问题转化为求解拉格朗日乘子法极值的问题,讨论拉格朗日乘子法极值存在的条件,基于人工神经网络非线性优化计算的优点,构造用于拉格朗日乘子法的人工神经网络学习规则和网络结构。优化计算平面磨床主轴系统的结构参数,讨论优化结果与KuhnTucker准则优化结果的一致性。
Example of the spindle system of surface grinding machine by neurocomputing is given. It is transposed that constrained optimization problem to solving Lagrange multiplier's extreme value by Lagrange multiplier's method. It is introduced Lagrangian's stationarity conditions. The artificial neural network architecture and learning rules of Lagrange multiplier's method is established. Optimum result of the spindle system of surface grinding machine is compared with that used Kuhn-Tucker criteria.
出处
《机械强度》
EI
CAS
CSCD
北大核心
2005年第3期342-344,共3页
Journal of Mechanical Strength
基金
云南省自然科学基金重点项目资助(2001E0005Z)。~~
关键词
拉格朗日乘子法
人工神经网络
主轴系统
优化
Lagrange multiplier's method
Neural network
Spindle system
Optimization