期刊文献+

关于图Cn·Cm,Cn·Fm,Cn·Wm的邻强边着色

Adjacent Strong Edge Chromatic Number of Cn·Cm,Cn·Fm,Cn·Wm Graphs
下载PDF
导出
摘要 设图G(V,E)为简单图,其点数不小于3.图G(V,E)的k-邻强边染色是指映射f:E(G)→{1,2,…,k},使f为正常边着色,且坌u,v∈V(G),当uv∈E(G)时,有C(u)≠C(v),其中C(u)={f(uv)|uv∈E(G)}.记X'as(G)=m in{k|G有k-邻强边着色法}.称X'as(G)为G的邻强边色数。本文构造了三类图Cn·Cm,Cn·Fm,Cn·W m,通过对图的具体着色得到其邻强边色数分别为4,m+1,m+1. Let G(V,E) be a simple connected graph with order not less than 3.The adjacent strong edge coloring means that if a proper k-edge coloring f is satisfied with C(u)≠C(v),∨u,v∈V(G) ,if uv∈E(G),Where C(u) ={f(uv) |uv∈E(G) },then f is called k-adjacent strong edge coloring of G. In the paper, we have constructed three types of graphs Cn·Cm,Cn·Fm,Cn·Wm. We define: Xas' (G)=min{k|G has the k-adjacent strong edge coloring }And Xas(G) is called the adjacent strong edge chromatic number of G. we get the adjacent strong edge chromatic numbers of m+1,m+1 and 4, respectively in the paper.
作者 安明强
出处 《天水师范学院学报》 2005年第2期23-24,26,共3页 Journal of Tianshui Normal University
关键词 图论 邻强边着色 邻强边色数 Cn·Cm Cn·Fm Cn·Wm 同构映射 graph circle adjacent strong edge coloring
  • 相关文献

参考文献4

  • 1Burris A C and Schelp R H.Vertex-distinguishing proper edge-colorings[J]. J of Graph Theory,1997,26(2):73-82.
  • 2Zhang Zhongfu,Liu Lingzhong,Wang Jianfang. Adjacent Strong Edge Coloring of Graphs [J].Applied Mathematics Letters, 2002,15:623-626.
  • 3刘林忠.若干平面图的邻强边染色[J].兰州铁道学院学报,1999,18(1):131-134. 被引量:5
  • 4Bondy J A ,Murty U S R. Graph Theory with Application[M].New York: Macmillan,1976.

二级参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部