期刊文献+

磁性纳米线反磁化机制的微磁学模拟 被引量:10

Micromagnetic simulation of magnetization reversal mechanism in magnetic nanowires
下载PDF
导出
摘要 通过微磁学模拟手段对长径比均为10的不同直径纳米线的反磁化机制进行了系统研究,发现磁反转模式强烈地依赖于纳米线的直径。直径很小时,反转模式为一致反转;随着直径增大,反转模式过渡为两种不同类型磁化核(一致截面的磁化核或涡旋截面的磁化核)的形成与传播;对于更大直径的纳米线,纳米线中出现多畴结构,反转过程通过多畴涡旋中心的移动来实现,涡旋中心的移动满足右手定则;得到了各种反磁化机制过渡的临界尺寸。计算了不同直径纳米线的矫顽力,并与实验数据进行了比较,从反磁化机制的角度解释了矫顽力随直径的变化关系。 The magnetization reversal mechanism of magnetic nanowires with different diameters but the same aspect ratio 10 were investigated by micromagnetic simulation. The results show that the reversal mechanism significantly depends on the nanowire diameter. For the smallest wire, the reversal model is coherent rotation . With the increase of diameter, magnetization reversal takes place via different nucleation (the transverse domain wall or the vortex domain wall) and subsequent propagation. For the larger nanowire, multidomain will form within the wire, the magnetization reversal is determined by the motion of vortexs which comforms to the right hand rule. The critical diameters of different reversal mechanism are obtained. The coercivities of nanowires with different diameters are calculated and compared with experimental data, the change of coercivity with diameter is interpreted in terms of magnetization reversal mechanism.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2005年第5期787-792,共6页 The Chinese Journal of Nonferrous Metals
基金 湖南省自然科学基金资助项目(04JJ3078)
关键词 纳米线 微磁学 反磁化机制 nanowire micromagnetics magnetization reversal mechanism
  • 相关文献

参考文献16

  • 1Strijkers G J,Dalderop J H J,Broeksteeg M A A,et al.Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina[J].J Appl Phys,1999,86(9):5141—5145.
  • 2Liu Q F, Gao C X, Xiao J J, et al. Size effects on magnetic properties in FeO. 68Ni0. 32 alloy nanowire arrays[J]. J Magn Magn Mater,2003,260:151-155.
  • 3Frei E H, Shtrikman S, Treves D. Critical size and nucleation filed of ideal ferromagnetic particles [J].Phys Rev, 1957, 106(3) : 446-455.
  • 4Aharoni A, Shtrikman S. Magnetization curve of the infinite cylinder[J]. Phys Rev, 1958,109(5):1522-1528.
  • 5Han G C, Zong B Y, Luo P, et al. Angular dependence of the coercivity and remanence of ferromagnetic nanowires arrays[J]. J Appl Phys, 2003, 93 (11):9202-9207.
  • 6Paulus P M, Luis F, Kroll M. Low-temperature studyof the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires[J]. J Magn Magn Mater, 2001, 224: 180-196.
  • 7Hertel R. Computational micromagnetism of magnetization processes in nickel nanowires[J]. J Magn Magn Mater, 2002, 249: 251-256.
  • 8Hertel R, Kirschner J. Magnetization reversal dynamics in nickel nanowires[J]. Physica B, 2004, 343:206-210.
  • 9Ferr6 R, Ounadjela K, George J M, et al. Magnetization processes in nickel and cobalt electrodeposited nanowires[J]. Phys Rev B, 1997, 56(21):14066-14075.
  • 10Mike D, Don P. OOMMF User's Guide, Release 1.2a, [EB/OL] . http://math, nist. gov/oommf/, October 30, 2002.

二级参考文献4

  • 1Leon Abelmann,J Appl Phys,2000年,87卷,5538页
  • 2Mao Chrisy,J Appl Phys,2000年,87卷,5416页
  • 3Hou S,J Appl Phys,1997年,81卷,5239页
  • 4Lodder J C,IEEE Trans Magn,1989年,25卷,4171页

共引文献28

同被引文献164

引证文献10

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部