期刊文献+

没有复杂几何概念的单方向场壳体有限变形模型综述 被引量:2

OVERVIEW OF FINITE DEFORMATION SINGLE DIRECTOR SHELL MODELS WITHOUT COMPLEX GEOMETRIC CONCEPTS
下载PDF
导出
摘要 基于Simo和Fox的工作,介绍一种没有复杂几何概念的现代壳体有限变形理论.在推导上,使用三维连续介质理论,运用现代力学的表示方法.这个模型提供了非线性几何精确壳体理论的力学分析基础.这种模型的一个优点是虽然将壳体仍然看作二维结构,但是它没有复杂的微分几何概念,如没有协变导数、Riemannian-Christoffel记号等.另外,还介绍了壳体局部平衡的弱形式或变分表示,这种表示特别适用于数值计算. Based on Simo and Fox's well-known work, this article gives a comprehensive overview of the single director shell model and its modern representation. It describes the mathematical foundation and the mechanical analysis of a fully nonlinear, geometrically exact shell theory. This formulation of the shell equations has the advantage that, although the exact nonlinear geometric structures of the idealized two-dimensional body are maintained, the complex differential geometry concepts such as covariant derivatives, Riemannian connections or Christoffel symbols are avoided. Furthermore, a weak or variational statement of the local balance equations is developed, as is ideally suited for numerical solution techniques.
出处 《力学进展》 EI CSCD 北大核心 2005年第2期181-194,共14页 Advances in Mechanics
基金 德国洪堡(AvH)基金会南非开普顿大学开普半岛技术大学南非国家研究基金会(NRF)中国暨南大学资助项目~~
关键词 单方向场 壳体模型 有限变形 壳体 有限元 single director field,shells models,finite deformation
  • 相关文献

参考文献36

  • 1Love A E H. The small free vibrations and deformation of a thin elastic shell. Phil Trans Roy Soc London, 1988, 179:491-546.
  • 2Truesdell C, Toupin R. The Classical Field Theories.In:Flugge S, ed. Handbuch der Physik, Ⅲ/Ⅰ, Berlin: Spriger-Verlage, 1960.
  • 3Chroscielewski J, Makowski J, Stumpf H. Genuinely resultant shell finite element accounting for geometric and material non-linerarity. Int J for Numerical Methods in Engng,1992, 35:63-94.
  • 4Simo J C, Vu-Quoc L. Three-dimensonal finite-strain rod model, Part II: geometrical and computational aspects.Computer Methods in Applied Mechanics and Engineering,1986, 58:79-116.
  • 5Crisfield M. A consistent co-rational formulation for nonlinear three-dimensional beam elements. Comp Meths Appl Mech Engrg, 1990, 81:131-150.
  • 6Buechter N, Ramm E. Shell theory versus degeneration-A comparison in large rotation finite element. Int J for Numerical Methods in Engng, 1992, 34:39-59.
  • 7Simo J C, Fox D D. On a stress resultant geometrically exact shell model. Part Ⅰ: Formulation and optimal parametrization. Comput Meths Appl Mech Engng,1989, 72:267-304.
  • 8Fox D D. A geometrical exact shell theory: [dissertation].Applied Mechanics Division, Stanford University, Stanford,California, 1990.
  • 9Sansour C, Buffer H. An exact finite rotation shell theory,its mixed variational formulation and its finite element implementation. Int J for Numerical Methods in Engng, 1992,34:73-115.
  • 10Libai A, Simmonds J G. The Non-linear Theory of Elastic Shells. One Spatial Dimension. Boston: Academic Press,1983.

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部