期刊文献+

Identification of Rhodiola species by using RP-HPLC 被引量:2

Identification of Rhodiola species by using RP-HPLC
下载PDF
导出
摘要 An approach was established using RP-HPLC (reversed-phase high-performance liquid chromatography) to identify ten species of Rhodiola, R. coccinea A. Bor, R. junggarica C.Y. Yang et N.R. Cui spn., R. heterodonta A. Bor, R. linearifolia A. Bor, R. pamiro alaiucm A. Bor, R. kaschgarica A. Bor, R. litwinowii A. Bor, R. gelida schrenk, R. rosea L. and R. quadrifide Fisch et Mey collected from the Tianshan Mountains areas of China. Chromatograms of alcohol-soluble proteins, generated from these ten Rhodiola spp. were compared. Each chromatogram of alcohol-soluble proteins came from a single seed of one wild species only. The results showed that when using a Waters Delta Pak. C18, 5 μm particle size reversed phase column (150 mm×3.9 mm), a linear gradient of 22%?55% solvent B with a flow rate of 1 ml/min and a run time of 67 min, the chromatography gave optimum separation of Rhodiola alcohol-soluble proteins. Chromatogram of each species was different and could be used to identify those species. Cluster analysis of genetic similarity coefficients of 37% to 60% showed a medium degree of genetic diversity among the species in these eco-areas. Cluster analysis showed that the ten species of Rhodiola can be divided into four clusters and yielded the general and unique biochemical markers of these species. RP-HPLC was shown to be a rapid, repeatable and reliable method for Rhodiola species identification and analysis of genetic diversity. An approach was established using RP-HPLC (reversed-phase high-performance liquid chromatography) to identify ten species of Rhodiola, R. coccinea A. Bor, R. junggarica C.Y. Yang et N.R. Cui spn., R. heterodonta A. Bor, R. linearifolia A. Bor, R. pamiro alaiucm A. Bor, R. kaschgarica A. Bor, R. litwinowii A. Bor, R. gelida schrenk, R. rosea L. and R. quadrifide Fisch et Mey collected from the Tianshan Mountains areas of China. Chromatograms of alcohol-soluble proteins, generated from these ten Rhodiola spp. were compared. Each chromatogram of alcohol-soluble proteins came from a single seed of one wild species only. The results showed that when using a Waters Delta Pak. C18, 5 μm particle size reversed phase column (150 mm×3.9 mm), a linear gradient of 22%?55% solvent B with a flow rate of 1 ml/min and a run time of 67 min, the chromatography gave optimum separation of Rhodiola alcohol-soluble proteins. Chromatogram of each species was different and could be used to identify those species. Cluster analysis of genetic similarity coefficients of 37% to 60% showed a medium degree of genetic diversity among the species in these eco-areas. Cluster analysis showed that the ten species of Rhodiola can be divided into four clusters and yielded the general and unique biochemical markers of these species. RP-HPLC was shown to be a rapid, repeatable and reliable method for Rhodiola species identification and analysis of genetic diversity.
出处 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第6期477-482,共6页 浙江大学学报(英文版)B辑(生物医学与生物技术)
基金 Project (No. 30470330) supported by the National Natural ScienceFoundation of China
关键词 RHODIOLA Genetic diversity Species identification RP-HPLC 植物学 遗传多样性 种类鉴别 高性能液体色谱
  • 相关文献

同被引文献28

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部