摘要
给出了二维正交各向异性结构弹塑性问题的边界元分析方法,包括相应边界积分方程、内点应力公式、边界元求解格式以及弹塑性应力计算方法。在弹塑性分析中,引入了HillTsai屈服准则,采用初应力法和切向预测径向返回法确定实际应力状态。通过具体算例分析了二维正交各向异性结构的弹塑性应力和塑性区分布情况,部分数值结果与已有结果进行了比较,两者基本吻合。结果表明,本文中给出的边界元法可以有效地用于求解二维正交各向异性结构的弹塑性问题。
The boundary element method (BEM) is proposed to analyze the elasto-plastic problems of 2-D orthotropic structures. The boundary integral equation, internal stress expression, BEM analysis formulae and elasto-plastic stress computation were established, respectively. In the elasto-plastic analysis, Hill-Tsai yielding criterion was adopted, and the initial stress method and tangent predictor-radial return algorithm were used to determine the real stress state. The elasto-plastic stresses and plastic zones of 2-D orthotropic structures were analyzed with the proposed method, and some numerical results were compared with the existing ones. Good agreement was observed, which demonstrates the validity of the present BEM in elaso-plastic problems of 2-D orthotropic structures.
出处
《复合材料学报》
EI
CAS
CSCD
北大核心
2005年第3期156-161,共6页
Acta Materiae Compositae Sinica
基金
国家自然科学基金(19902007)
全国优秀博士论文基金(200025)
关键词
二维正交各向异性结构
弹塑性问题
边界元法
Boundary element method
Computer simulation
Elastoplasticity
Finite element method
Mechanical properties
Plastic deformation
Problem solving
Stress concentration