期刊文献+

等厚双层涂层材料受法向集中力作用的三维理论解 被引量:1

Three Dimensional Theoretical Solution of a Normal Force on the Surface of Two Coating Materials with the Same Thickness
下载PDF
导出
摘要 基于三维轴对称弹性理论,通过利用镜像点方法和半无限体表面受法向集中力作用的基本解,推导了等厚双层涂层材料受法向集中力作用的显式理论解.该理论解既可用作格林函数进一步求解复杂问题的理论解,也可用作边界元法的基本解以提高数值计算的精度和效率.算例表明,对其无穷多个镜像点只需考虑前3个即可获得足够精度的解.该理论解以固定在各镜像点上局部坐标系下位移函数的形式给出.高阶镜像点的位移函数,可通过递推的方法由对应于低阶镜像点的位移函数求得. Based on the theory of spatial axisymmetrical elasticity, the theoretical solution of a normal force acting at the free surface of two bonded dissimilar coating materials with the same thickness was deduced by introducing mirror point method and the fundamental solution of a semi-infinite body suffering a concentrated force. It can be used as Green function to deal with the problem of distributed force and even more complicated ones, and the fundamental solution for boundary element method as well. There are infinite mirror points, but the last numerical analysis indicates that we can get accurate enough solution by only taking the first three mirror points into account. It not only proves the correctness of the theoretical deduction, but also shows only the displacement functions corresponding to the first several mirror points have effects on the accuracy of the solution. This fundamental solution is given by the displacement functions defined under the local coordinate systems with their origins placed at each mirror point. The displacement functions corresponding to the mirror point of higher order can be determined from that to the lower order ones.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第5期795-800,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(10372058)
关键词 涂层材料 集中力 镜像点 理论解 Boundary conditions Finite element method Green's function Mathematical models Mechanical properties Multilayers Numerical analysis Stress analysis
  • 相关文献

参考文献17

  • 1Miller R A. Gurrent status of thermal barrier coating-an overview[J]. Surface and Coating Technology,1987,30(1):1-11.
  • 2丁彰雄.热障涂层的研究动态及应用[J].中国表面工程,1999,12(2):31-37. 被引量:24
  • 3Wigren J, Pejryd L. Thermal barrier coatings-why,how, where and where to[A]. Proc of the 15th International Thermal Spray Conference [C]. France:Nice, 1998. 1531-1542.
  • 4Vijaya M, Krishna Kumar R. Fracture mechanics approaches to coating strength evaluation [J]. Engineering Fracture Mechanics, 1996,55 (2): 235- 248.
  • 5胡奈赛,徐可为,何家文.涂、镀层的结合强度评定[J].中国表面工程,1998,11(1):31-35. 被引量:34
  • 6Kouitat N R, Consiglio R, Stebut J V. Boundary element modeling of a coating-substrate composite under an elastic, Hertzian type pressure field : cylinder on flat contact geometry[J]. Surface and Coating Technology, 1998,102 (2): 138- 147.
  • 7Liu Yi-jun, Fan Hui. Analysis of thin piezoelectric solids by the boundary element method[J]. Comput Methods Appl Mech Engrg, 2002,191 (21): 2297-2315.
  • 8Chalker P R, Bull S J, Rickerby D S. Areview of the methods for the evaluation of coating-substrate adhesion[J]. Mat Sci Engrg, 1991 ,A140(2): 583- 592.
  • 9Mutoh Y, Xu J Q, Miyashita Y, et al. On evaluation of adhesive strength in scratch test of coating materials [J]. Trans JSME, 2002 ,A68 (4): 909- 916.
  • 10Venkataraman S, Kohlstedt D L, Gerberich W W.Metal-ceramic interfacial fracture resistance using continuous microscratch technique [J]. Thin Solid Films, 1993,223 (2): 269- 275.

二级参考文献11

  • 1Yuuki R. Elastic Analysis by Boundary Element Method.In Japanese, Tokyo Baifukan,1987
  • 2Yuuki R, Cho SB. Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials. Engng Fract Mech,1989,34:179~188
  • 3Lin KY, Mar JW. Finite element analysis of stress intensity factors for cracks at a biomaterial interface. Int J Fract,1976,12:521~531
  • 4Yuuki R, Xu JQ. Development of the boundary element method program (BEM2D/EWS) and analysis of dissimilar materials. Sesankenkyu (IIS, Tokyo Univ.),1991,43:306~309
  • 5Bogy DB. On the problem of edge bonded elastic quarter planes loaded at boundary. Int J Solids and Struct,1970,6:1287~1313
  • 6Hein VL, Erdogan F. Stress singularity in a two materials wedge. Int J Fract,1971,7:317~329
  • 7Dunders J. Boundary condition at interface. In: Micromechanics and Inhomogeneous. Wang GJ ed, New York:Springer-Verlag,1990.109~114
  • 8Hetenyi J, Dunders J. The elastic plane with a circular insert loaded by a tangential force. J Appl Mech,1962,29:362~368
  • 9Rongved L. Force interior to one of two jointed semi-infinite solids. In: Proc. of the first Midwestern Conference on Solid Mechanics, Mindlin KD ed, Urbana: University of Illinois,1953.1~13
  • 10Dunders J. Effects of elastic constants on stress in a composite under plane deformation. J Composite Mater,1967,1:310~322

共引文献59

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部