期刊文献+

计算功能梯度压电材料能量释放率的修正J积分法

A Modified J-Integral Method for Calculating Energy Release Rates for Functionally Graded Piezoelectric Materials
下载PDF
导出
摘要 功能梯度压电材料的非均匀材料特性将导致标准J积分失去与路径无关的特性.为此,提出了修正J积分来计算裂纹尖端的能量释放率,该修正J积分在功能梯度压电材料中具有与积分路径无关的性质.以功能梯度压电板的平面问题为例,给出了一些数值算例以说明修正J积分在计算功能梯度压电材料能量释放率方面的优越性. Due to the influence of material inhomogeneity in functionally graded piezoelectric materials (FGPMs), the standard J-integral loses the path-independence. This paper presented a modified J-integral, which retains the path-independence in FGPMs, for calculating the energy release rate. Some numerical examples were provided to demonstrate the superiority of the modified J-integral over the standard J-integral.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第5期805-809,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(10132010) 青年自然科学基金资助项目(10302020)
关键词 功能梯度压电材料 J积分 路径无关性 面积分 functionally graded piezoelectric materials (FGPMs) J-integral path-independence domain integral
  • 相关文献

参考文献13

  • 1Wu C M, Kahn M K, Moy W. Piezoelectric ceramics with functionally gradients: a new application in material design[J]. J Am Ceram Soc, 1996,79: 809-812.
  • 2Zhu X, Xu J, Meng Z. Microdisplacement characteristics and microstructures of functionally gradient piezoelectric ceramic actuator [J]. Mater Des, 2000,21:561-566.
  • 3Wang B L, Noda N. Transient smart laminate with two piezoelectric layers bonded to an elastic layer [J]. Eng Fract Mech, 2001,68: 1003 - 1012.
  • 4Li C Y, Weng G J. Yoffe-type moving crack in a functionally graded piezoelectric material[A]. Proc R Soc Lond[C]. Lond on: Royal Society, 2002. A458:381-399.
  • 5Jin B, Zhong Z. A moving mode-Ⅲ crack in functionally graded piezoelectric material: permeable problem[J]. Mech Res Comm, 2002,29: 217- 224.
  • 6Chen J, Liu Z X, Zou Z Z. Crack initiation behavior of functionally graded piezoelectric material: prediction by the strain energy density criterion[J]. Theoret Appl Fract Mech, 2004,41: 63- 82.
  • 7陈建,刘正兴.压电功能梯度材料层反平面裂纹瞬态问题的研究[J].上海交通大学学报,2003,37(4):527-531. 被引量:2
  • 8Rice J R. A path independence integral and the approximate analysis of strain concentration by notches and cracks[J]. J Appl Mech, 1968,35: 379- 386.
  • 9Dascalu C, Maugin G A. Energy-release rates and path independent integrals in electroelastrc crack propagation [J]. Int J Eng Sci, 1994, 32 (5): 755 -765.
  • 10Nishioka T, Shen S P, Yu J H. Dynamic J integral,separated dynamic J integral and component separation method for dynamic interfacial cracks in piezoelectric bimaterials [J]. Int J Fract, 2003,122: 101 -130.

二级参考文献11

  • 1Zhu X, Wang Q, Meng Z. A functionally gradient piezoelectric actuator prepared by metallurgical process in PMN-PZ-PT system[J]. J Mater Sci Lett,1995,14:516--518.
  • 2Chen Z T, Yu S W, Karihaloo B L. Antiplane shear problem for a crack between two dissimilar piezoelectric materials [J]. fat J Fracture, 1997, 86: L9--L12.
  • 3Kwon J H, Lee K Y. Interface crack between piezoelectric and elastic strips [J]. Archive Appl Mech,2000,70:707--714.
  • 4Meguid S A, Chen Z T. Transient response of finite piezoelectric strip containing eoplanar insulating cracks under eleetromeehanieal impact Mecj Mater, 2001,33 (2):85 -- 96.
  • 5Pak Y E. Crack extension force in a piezoelectric material[J]. J Appl Mech, 1990,67:647--653.
  • 6Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics [J]. J Mech Plays Solids, 1992,40:739-- 765.
  • 7Zuo J Z, Sih G C. Energy density formulation and interpretation of cracking behavior for piezoelectric ceramics [J]. Theoret Appl Fraet Meeh, 2000, 34(1):17--33.
  • 8Erdogan F. Complex function technique. In: Continuum physics [M]. vol. Ⅱ. New York: Academic Press, 1975. 523--603.
  • 9Miller M, Guy W. Numerical inversion of the Laplace transform by use of Jacobi polynomials[J].SIAM Journal Numerical Analysis, 1966, 3: 624-635.
  • 10林启荣,王宗利,刘正兴.端部受弯矩作用的压电弹性层合梁的二维解析解[J].上海交通大学学报,2000,34(8):1044-1047. 被引量:6

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部