期刊文献+

不动点和极大元定理在抽象经济中的应用 被引量:4

Fixed Point and Maximal Element Theorems with Applications to Abstract Economies
下载PDF
导出
摘要 由较好允许映象类的性质对定义在G 凸空间的乘积空间上的一簇集值映象证明了一些新的不动点定理,在G 凸空间的乘积空间内给出了一簇集值映象的极大元存在性定理.作为应用,得到了一些抽象经济的平衡存在定理. In this paper,by applying the properties of better admissible mappings, some new collectively fixed point theorems for a family of set-valued mappings defined on the product space of noncompact G-convex spaces are proved. Some existence theorems of maximal element are given in G-convex spaces. As applications some equlibrium existence theorems of economies are obtained.These theorems improve, unify and generalize many important known results in the recent literature.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期273-277,共5页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅重点科研基金资助项目
关键词 G-凸空间 较好允许集值映象 抽象经济 极大元 G-convex spaces Better admissible mappings Abstract economy Maximal element
  • 相关文献

参考文献3

二级参考文献64

  • 1Tan K K, Zhaag X L. Fixed point theorems on G- convex spaces and Applications[J]. Proe Nonlinear Funct Anal Appl,1996,1(1):1 - 19.
  • 2Tarafdar E. A fixed point theorem and equilibrium point of an abstract economy[J]. J Math Econom, 1991,20(1) :211 - 218.
  • 3Tarafdar E. Fixed point theorems in H-spaces and equilibrium points of abstract economies[J]. J Austral Math Soc (Ser A), 1992,53(1) :252 - 260.
  • 4Toussaint S. On the existence of equilibra in economies with infinite commodities and without ordered preferences[J]. J Econom Theory,1984,33(1) :98 - 115.
  • 5Tulcea C I. On the equilibriums of generalized games[R]. The Center for Mathematical Studies in Economics and Management Science,1986.696.
  • 6Tulcea C I. On the approximation of upper semi-continuous correspondences and and the equilibriums of generalized games[J]. J Math Anal Appl, 1988,136(1) :267 - 189.
  • 7Yarnnelis N C, Ptabhakar N D. Existence of maximal elements elements and equilibria in linear topological spaces[J]. J Math Econom,1983,12(2) :233 - 245.
  • 8Yuan G X Z. The existence of equilibria for noncompact genemlized games[ J]. Appl Math Lett,2000, 13 (1):57 - 63.
  • 9Yuan G X Z. The Study of Minimax Inequalities and Applications to Economies and Variarional Inequalities[M]. Memoirs AMS, 1998. 132:525.
  • 10Yuan G X Z. KKM Theory and Application in Nonlinear Analysis[M]. New York:Marcel Deldcer Inc, 1999.

共引文献13

同被引文献45

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部