期刊文献+

QUANTUM COMPLEXITY OF THE INTEGRATION PROBLEM FOR ANISOTROPIC CLASSES 被引量:2

原文传递
导出
摘要 We obtain the optimal order of high-dimensional integration complexity in the quantumcomputation model in anisotropic Sobolev classes W∞^r ([0, 1]^d) and Hǒlder Nikolskii classes H∞^r([0, 1]^d). It is proved that for these classes of functions there is a speed-up of quantum algorithms over deterministic classical algorithms due to factor n^-1 and over randomized classical methods due to factor n^-1/2. Moreover, we give an estimation for optimal query complexity in the class H∞^∧ (D) whose smoothness index is the boundary of some complete set in Z+^d.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2005年第3期233-246,共14页 计算数学(英文)
  • 相关文献

参考文献25

  • 1Bakhvalov, N.S., On the rate of convergenc of indeterministic integration processes within the functional classes Wp^(l), Theory Probab. Appl., 7 (1962), 227.
  • 2Bakhvalov, N.S., Optimal convergence bounds for quadrature processes and integration methods of Monte Carlo type for classes of functions, Z. Vycisl. Mat. i Mat. Fiz., supple, 4 , 1964, 5-63(in Russian).
  • 3Bakhvalov, N.S., A lower bound for the randomness measure required in the use of the Monte-Carlo method. U.S.S.R, Comput. Math. Math. Phys., 5:4 (1965), 252-257.
  • 4Blum, L., Cucker, F., Shub, M., Smale, S., Complexity and Real Computation, Springer Verlag,New York, 1998.
  • 5G. Brassard, P. Hoyer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation,2000.
  • 6W. Dahmen, R. DeVore, K. Scherer, Multi-dimensional spline approximation, SIAM J. Numer.Anal., 17 (1980), 380-402.
  • 7Fang Gensun, Ye Peixin, Integration error for multivariate functions from anisotropic classes, J.Complexity, 19 (2003), 610-627.
  • 8L. Grover, A framework for fast quantum mechanical algorithms, Proceedings of the 30th Annual ACM Symposium on the theory of Computing, ACM Press, New York, 53-62, 1998.
  • 9S. Heinrich, Random approximation in numerical analysis, In K. D. Bierstedt, et al., Function Analysis: Proceedings of the Essen Conference, V. 150 of Leer. Notes in pure and appl. Math.,123-171, New York, Bessel, Hong Kong, 1994, Marcel Dekker.
  • 10S. Heinrich, Quantum summation with an application to integration, J. Cornplezity, 18, (2002),1-50.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部