摘要
利用分割孔隙的方法,取一半孔隙作为夹杂,另一半和原基体作为新基体,首先利用Mori-Tanaka法求得新基体的有效模量,然后类似地对新基体和另一半孔隙,利用相同的方法求得多孔介质的有效复合模量。通过实例计算表明,即使当孔隙率较大时,现方法与试验数据也相当吻合。
For estimating the effective properties, the void of the porous materials is split into two parts, in which only half part of void is considered as the inclusion, and remaining phases as a new matrix with unknown elastic properties. Then, based on the Mori-Tanaka theory to determine the effective properties of the new matrix and another part of the void. The results show excellent agreement with experimental data even inclusions with larger volume fractions and highly concentration.
出处
《科学技术与工程》
2005年第10期665-667,共3页
Science Technology and Engineering
基金
国家自然科学基金(10202010)
北京交通大学人才基金(TJJ03010)资助项目