期刊文献+

高孔隙率多孔介质材料有效复合模量的预估

Estimate for the Effective Properties of Porous Materials with High Void Ratio
下载PDF
导出
摘要 利用分割孔隙的方法,取一半孔隙作为夹杂,另一半和原基体作为新基体,首先利用Mori-Tanaka法求得新基体的有效模量,然后类似地对新基体和另一半孔隙,利用相同的方法求得多孔介质的有效复合模量。通过实例计算表明,即使当孔隙率较大时,现方法与试验数据也相当吻合。 For estimating the effective properties, the void of the porous materials is split into two parts, in which only half part of void is considered as the inclusion, and remaining phases as a new matrix with unknown elastic properties. Then, based on the Mori-Tanaka theory to determine the effective properties of the new matrix and another part of the void. The results show excellent agreement with experimental data even inclusions with larger volume fractions and highly concentration.
出处 《科学技术与工程》 2005年第10期665-667,共3页 Science Technology and Engineering
基金 国家自然科学基金(10202010) 北京交通大学人才基金(TJJ03010)资助项目
关键词 多孔介质材料 有效复合模量 Mori—Tanaka法 porous materials effective modulus Mori-Tanaka method
  • 相关文献

参考文献8

  • 1[1]Hill R. A self-consistent mechanics of composite materials. J Mech Phys Solids, 1965; 13:213-222
  • 2[2]Zimmerman R W. Elastic moduli of a solid containing spherical inclusions. Mech Mater 1991;12:17-24
  • 3[3]Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfiring inclusions. Acta Metall, 1973;21:571-574
  • 4[4]Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids,1989; 27:315-330
  • 5[5]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems. proc Roy Soc London, 1957; A241,376-396
  • 6[6]Weng G J. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int J Eng Sci, 1984; 22:845-857
  • 7[7]Ishai O,Cohen L J. Elastic properties of filed and porous epoxy composites. Int J Meeh Sci, 1967; 9:539-546
  • 8[8]Huang Y. et al. Generalized self-consistent mechanics method for composite-materials with multiphase inclusions. J Mech Phys Solids, 1994; 42:491-504

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部