期刊文献+

面向应用领域的知识发现系统开发平台KDIST

Development Environment of Application Domain-oriented Knowledge Discovery System KDIST
下载PDF
导出
摘要 介绍了一个面向应用领域的知识发现系统开发平台KDIST。将数据挖掘技术巧妙地封装在应用领域的问题中,使开发出的知识发现系统操作傻瓜化,用户无须关心数据挖掘本身,有效地减轻了领域用户使用负担,提高了数据挖掘技术实用性。所开发出的知识发现系统将挖掘得到的知识融合到已有专家系统的知识库中。两个实例系统的应用证明知识发现系统是专家系统自动半自动知识获取和知识库精化的良好工具。 A universal development environment called KDIST, which is used to develop application domain-oriented knowledge discovery systems (KDS), is presented. The KDS is modeled by a number of function modules, each of which is scheduled to acquire from data knowledge related to a specific domain problem. According to the characteristics of the domain problem, a mining scheme is made for the corresponding function module, including data-preprocessing method and mining algorithm. The discovered knowledge in KDS can then be fused into knowledge bases of existing expert systems. Two real-use KDSs developed by KDIST are introduced and proved to be effective on automatic knowledge acquisition and knowledge refinement. Several data mining algorithms are also discussed.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第11期47-49,共3页 Computer Engineering
基金 国家自然科学基金资助项目(69835001) 国家"863"计划基金资助项目(2001AA115170)
关键词 数据挖掘 知识发现系统 自动知识获取 知识精化 Data mining Knowledge discovery system Automatic knowledge acquirement Knowledge refinement
  • 相关文献

参考文献9

  • 1Fong S.Chan S.Mining Online Users' Access Records for Web Business Intelligence.Proceedings of IEEE International Conference on Data Mining,ICDM 2002,2002-12-09: 759 - 762.
  • 2Braha D.Shmilovici A.Data Mining for Improving A Cleaning Process in the Semiconductor Industry.IEEE Transactions on Semiconductor Manufacturing,2002,15(1): 91 - 101.
  • 3Ceruti M G,McCarthy S J.Establishing A Data-mining Environment for Wartime Event Prediction with An Object-oriented Command and Control Database.Proceedings of the Third IEEE International Symposium on Object-Oriented Real-time Distributed Computing (ISORC 2000),2000-03-15: 174 - 179.
  • 4Developing Innovative Applications in Agriculture Using Data Mining.www.cs.waikato.ac.nz/-ml/publications/ 1999/99SJC-GH-Innovative-apps.pdf.
  • 5吴正龙,熊范纶,滕明贵.基于模糊聚类的模糊关联规则挖掘[J].小型微型计算机系统,2004,25(7):1295-1297. 被引量:6
  • 6吴正龙,熊范纶,滕明贵.加权模糊规则系统研究[J].模式识别与人工智能,2003,16(4):506-510. 被引量:5
  • 7Hang Xiaoshu,Huang He,Yuan Hongchu,et al.An FSA-based Approach for Mining Sequential Patterns with User-specified Skeletons.Proceedings of the 4^th World Congress on Intelligent Control and Automation,2002-06-10,1: 537 - 541.
  • 8王振宇,杭小树,边历峰.一种基于时间窗口的关系数据库中挖掘序贯模式的算法[J].模式识别与人工智能,2001,14(3):336-341. 被引量:4
  • 9Wu Zhenglong,Xu Meisheng,Wang Ruijing,et al.Ellipsoid-based Fuzzy Association Rule Mining Algorithm.Proceedings of the 5^th World Congress on Intelligent Control and Automation,2004-06-14.

二级参考文献21

  • 1[1]Agrawal R, Imielinski T and Swami A. Mining association rules between sets of items in large databases[C]. In: SIGMOD, Washington D.C., May 1993, 207-216.
  • 2[2]Ishibuchi H, Nakashima T and Yamamoto T. Fuzzy association rules for handling continuous attributes[M]. ISIE 2001, Pusan, Korea.
  • 3[3]Park J S, Chen M-S and Yu P S. An effective hash-based algorithm for mining association rules[C]. In: SIGMOD,San Jose, 1995.ACM, 175-186.
  • 4[4]Sarasere A, Omiecinsky E and Navathe S. An efficient algorithm for mining association rules in large databases[C]. In: 21st Int'l Conf. On VLDB,Zrich, Switzerland, Sept.1995.
  • 5[5]Srikant R and Agrawal R. Mining quantitative association rules in large relational tables[C]. In: Proc. 1996 ACM-SIGMOD Int.Conf.Management of Data (SIGMOD'96), Montreal, Canada, June 1996, 1-12.
  • 6DeJong K. Learning with Genetic Algorithms: An Overview. Machine Learning, 1988, 3(3):121 - 138
  • 7Gordon O, Herrera F, Hoffmann F, Magdalena L. Genetic Fuzzy System Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. Volume 19 of Advances in Fuzzy Systems - Applications and Theory. Singapore: World Scientific, 2001
  • 8Hwang W R, Thompmn W E. Design of Intelligent Fuzzy Logic Controllers Using Genetic Algorithms. In: Proc of the IEEE International Conference on Fuzzy System, Orlando, FL, 1994, 1383 -1388
  • 9Thrift P. Fuzzy Logic Synthesis with Genetic Algorithms. In: Proc of 4th International Conference on Genetic Algorithms( ICGA), SanDiego, CA, 1991, 509 513
  • 10Homaifar A, McCormick E. Simultaneous Design of Membership Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms. IEEE Trans on Fuzzy Systems, 1995, 3: 129- 139

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部