期刊文献+

具有非线性出生率的时滞Lasota-Wazewska模型的稳定性分岔 被引量:4

Stability Bifurcations of Lasota-Wazewska-type Model with Maturation Delay and Nonlinear Birth Rate
下载PDF
导出
摘要 研究了一类Lasota-Wazewska单种群人口模型x′(t)=-μx(t)+pe-dτe-γx(t-τ).其中的出生率是时滞τ的非线性函数pe-dτ而不是常数p.应用选择性的方法或中心流形定理,确定了分岔周期解的稳定性及Hopf分岔的方向.应用计算机软件和数值方法,也得到了一些相图和轨线的时间历程图. A Lasota-Wazewska-type single species population model x′(t)=-μx(t)+pe^(-dτ)e^(-γx(t-τ)) is investigated. We think its birth rate as pe^(-dτ) which is nonlinear about the delay τ instead of constant p. By exploring an alternative approach, which is also called as Center Manifold, we determine the stability of bifurcating periodic solutions and the direction of Hopf bifurcation. Some phase portraits, waveform diagrams are also given by computer simulation.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期1-5,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10432010).
关键词 Lasota-Wazewska模型 成熟时滞 HOPF分岔 Lasota-Wazewska model,maturation delay,Hopf bifurcation
  • 相关文献

参考文献5

  • 1Wazewska-Czyzewska M, Lasota A. Mathematical problems of the dynamics of the red blood cells system[J]. Ann Polish Math,Soc Ser Ⅲ Appl Math,1976,6:23-40.
  • 2Kulenovic S R M, Ladas G. Linearized oscillations in population dynamics[J]. Bulletin of Mathematical Biology,1987,49:27-615.
  • 3Gyori I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications[M]. London:Oxford Univ Press,1991.
  • 4Karakostas G, Philos G Ch, Sficas G Y. Stable steady state of some population model[J]. J Dynam Differential Equations,1992,4:161-190.
  • 5Xu J, Chung K W. Effects of time delayed position feedback on a van der Pol-Duffing oscillator[J]. Physica D,2003,180(1-2):17-39.

同被引文献14

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部