期刊文献+

对流扩散方程的一种高精度特征差分格式 被引量:7

A Class of High Accuracy Characteristic Difference Method for Convection-Diffusion Equations
下载PDF
导出
摘要 根据已发展的二阶微商三次样条四阶逼近公式,提出了基于线性插值的求解对流扩散方程特征差分格式.通过Fourier方法讨论了文中格式的稳定性.数值结果表明,本文的格式明显优于基于线性插值的特征差分格式. A new kind of characteristic-difference scheme is proposed for solving convection-diffusion (equations) with the linear interpolation method.The method is based on the cubic-spline difference formulae of fourth-order accuracy for second order derivatives developed by the other authors.The stability of the characteristic-difference scheme is studied.Numerical results show that our method is better than that of the ordinary characteristic-difference scheme with linear interpolation method.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期38-41,70,共5页 Journal of Nanjing Normal University(Natural Science Edition)
关键词 对流扩散方程 特征差分格式 线性插值 稳定性 高精度 convection-diffusion equations, characteristic-difference scheme, linear interpolation, stability, high accuracy
  • 相关文献

参考文献13

  • 1Chatwin P C, Allen C M. Mathematical models of dispersion in rivers and estuaries[J]. Ann Rev Fluid Mech,1985,17:119-149.
  • 2Chaudhry M H, Cass D E, Edinger J E. Modelling of unsteady-flow water temperatures[J]. J Hydraul Eng,1983,109(5):657-669.
  • 3Fattah Q N, Hoopes J A. Dispersion in anisotropic homogeneous porous media[J]. J Hydraul Eng,1985,111:810-827.
  • 4Gane C R, Stephenson P L. An explicit numerical method for solving transient combined heat conduction and convection problems[J]. Int J Numer Meth Engrg,1979,14:1141-1163.
  • 5Guvanasen V, Volker R E. Numerical solutions for solute transport in unconfined aquifers[J]. Int J Numer Meth Fluids,1983,3:103-123.
  • 6Douglas J, Russell T F. Numerical methods for convection-dominated diffusion problem based on combining the method of characteristics with finite element or finite difference procedures[J]. SIAM J, Numer Anal,1982,19(5):871-885.
  • 7Rigal A. Numerical analysis of two-level finite difference schemes for unsteady diffusion-convection problems[J]. Int J Numer Methods Engrg,1989,28(2):1001-1021.
  • 8陆金甫,张宝琳,徐涛.求解对流-扩散方程的交替分段显-隐式方法[J].数值计算与计算机应用,1998,19(3):161-167. 被引量:24
  • 9张宝琳,符鸿源.一类交替块Crank-Nicolson方法的差分图[J].科学通报,1999,44(11):1149-1152. 被引量:6
  • 10王文洽.求解扩散方程的一类交替分组显式方法[J].山东大学学报(理学版),2002,37(3):194-199. 被引量:10

二级参考文献4

共引文献43

同被引文献37

  • 1张小峰,陆俊卿,易灵.求解一维对流扩散方程的一种高精度数值格式[J].武汉大学学报(工学版),2005,38(2):10-14. 被引量:6
  • 2葛永斌,田振夫,吴文权.含源项非定常对流扩散方程的高精度紧致隐式差分方法[J].水动力学研究与进展(A辑),2006,21(5):619-625. 被引量:25
  • 3魏剑英,葛永斌,田振夫.一种求解一维对流扩散方程的高精度紧致隐式差分格式[J].宁夏大学学报(自然科学版),2007,28(2):120-123. 被引量:6
  • 4[1]Douglas J,Russell T F.Numerical methods for convection-dominated diffusion problem based on combining the method of characteristics with finite element or finite difference procedures[J].SIAM J Numer Anal,1982,19 (5):871-885.
  • 5[2]Evans D J,Abdullah A R.A New Explicit Method for the Diffusion-convection Equations[J].Comp and Math with Appl,1985,11:145-154.
  • 6[3]Rigal A.Numerical analysis of two-level finite difference schemes for unsteady diffusion-convection problems[J].Int J Numer Method Eng,1989,28(2):1001-1021.
  • 7Chen Y. Uniform convergence analysis of finite difference approximations for singular perturbation prob- lems on an adapted grid. Advances in Computational Mathematics, 2006, 24:197-212.
  • 8Chen Y. Uniform pointwise convergence for a singularly perturbed problem using arc-length equidis- tribution [J]. Journal of Computational and Applied Mathmatics, 2003, 159: 25-34.
  • 9Chen Y. Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid [J]. Advances in Computational Mathematics, 2006, 24: 197-212.
  • 10Huang W Z , Ren Y , Russell R D . Moving mesh partial differential equations (MMPDES) based on the equidistribution principle [J]. SIAM Journal on Numerical Analysis, 1994, 31(3): 709-730.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部