期刊文献+

基于向量机的边缘检测算法优化研究 被引量:1

Research of SVM-Based Edge Detection Algorithm Optimization
下载PDF
导出
摘要 该文利用最小二乘向量机(LSSvM)对原始图像每一像素的邻域作灰度曲面的最佳拟合,并以径向基核函数为例导出了图像的梯度算子和零交叉算子。通过梯度和零交叉的综合,实现了边缘的定位和检测,提出了利用边缘检测性能指标来优化参数的方法。确定了高斯LSsVM的参数(σ2,γ)为(7,1),用所选参数进行了图像边缘检测实验。结果表明,基于支持向量机的边缘检测算法可靠性好、效率高。 In this paper, the image intensity surface for the neighborhood of every pixel is well-fitted by the Least Squares Support Vector Machine (LSSVM), and the gradient and the zero-crossing operators are deduced from the LSSVM with the Radial Basis Function (RBF) kernel function, as an example. The decision is made whether a pixel is an edge or not based on the combination results of the gradient and the zero-crossings. One method using the edge detection evaluating merit figure to optimize the LSSVM parameters is proposed. The optimal configuration of parameters (σ2,γ) for the LSSVM with RBF kernel is (7, 1). With the selected parameters, the computer edge detection experiments are carried out. The experimental results demonstrate the proposed algorithm is reliable and efficient.
出处 《电子与信息学报》 EI CSCD 北大核心 2005年第5期717-721,共5页 Journal of Electronics & Information Technology
关键词 边缘检测 最小二乘向量机 边缘检测性能评价 参数优化 Edge detection, Least Squares Support Vector Machine (LSSVM), Edge detection performance evaluation, Parameter optimization
  • 相关文献

参考文献10

  • 1Torre V, Poggio T A. On edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1986, 8 (2): 147 - 163.
  • 2Marr D, Hildreth E C. Theory of edge detection. Proc. of Royal Soc. London Ser. B., 1980, 207:187 - 217.
  • 3Canny J. A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1986, 8(6):679 - 698.
  • 4Haralick R M. Digital step edges from zero crossing second directional derivatives. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6(1): 58 - 68.
  • 5Hou Z J, Wei G W. A new approach to edge detection. Pattern Recognition, 2002, 35(7): 1559 - 1570.
  • 6Konishi S, Yuille A L, Coughlan J M, et al.. Statistical edge detection: learning and evaluating edge cues. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(1): 57 - 74.
  • 7Vapnik V. The nature of statistical learning theory. New York,NY: Wiley, 1998, Chapter 5.
  • 8Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3):293 - 300.
  • 9Yan Hui, Zhang Xuegong, Li Yanda. Relation between a support vector machine and the least square method. J. Tsinghua Univ.(Sci. & Tech.), 2001,41(9): 77 - 80.
  • 10Abdou I E, Pratt W K. Quantitative design and evaluation of enhancement thresholding edge detectors. Proc. IEEE, 1979,67(5): 753 - 763.

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部