期刊文献+

空间直观森林景观模型空间不确定性的地统计学模拟 被引量:11

Geostatistical Modeling of Spatial Uncertainty in a Spatially Explicit Forest Landscape Model Simulation
下载PDF
导出
摘要 为了用尽可能小的蒙特卡罗模拟样本来反映模型模拟结果中的不确定性,把拉丁超几何体采样引入地统计随机模拟的LU分解算法.首先把拉丁超几何体采样与普通随机采样在LU分解算法中的表现进行比较,然后把基于拉丁超几何体采样的LU分解法应用于空间直观森林景观模型LANDIS的模拟.结果表明,与普通随机采样相比,拉丁超几何体采样能捕获更多的不确定性,特别是在蒙特卡罗模拟次数较少时.LANDIS模型的模拟结果表明,由地统计学随机模拟所引入的不确定性在象元尺度上随模拟时间增加而增加,但是在景观尺度上并没有受很大影响. We introduced an effective sampling method (Latin Hypercube sampling) into a stochastic simulation algorithm (LU decomposition simulation). Latin Hypercube sampling is first compared with a common sampling procedure (random simple sampling) in LU decomposition simulation. Then it is applied to the investigation of uncertainty in the simulation results of a spatially explicit forest model, LANDIS. Results showed that Latin Hypercube sampling can capture more variability in the sample space than simple random sampling especially when the number of simulations is small. Simple as the application is, it gives us general insights about which model results are robust given the uncertainty introduced by interpolation. Application results showed that LANDIS simulation results at the landscape level (species percent area and their spatial pattern measured by an aggregation index) is not sensitive to the uncertainty in species age cohort information at the cell level produced by geostatistical stochastic simulation algorithms. This suggests that LANDIS can be used to predict the forest landscape change at broad spatial and temporal scales even if exhaust species age cohort information at each cell is not available.
出处 《中国科学院研究生院学报》 CAS CSCD 2005年第4期436-446,共11页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家自然科学基金项目 ( 40 3 3 10 0 8) 中国科学院创新项目 (KSCX2 -SW -13 3 )资助
关键词 不确定性 克吕格插值 地统计随机模拟 LU分解 拉丁超几何体采样 空间直观森 林景观模型 uncertainty, Kriging interpolation,geostatistical stochastic simulation, LU decomposition, Latin Hypercube sampling, spatially explicit forest landscape model
  • 相关文献

参考文献47

  • 1Baker WL, Egbert SL, Frazier GF. A spatial model for studying the effects of climatic change on the structure of landscapes subject to large disturbances. Ecol. Model., 1991, 56: 109~125
  • 2Gardner RH, Hargrove WW, Turner MG, et al. Climate change, disturbances and landscape dynamics. In: Walker BH, Steffen WL ( Eds. ).Global Change and Terrestrial Ecosystems. Cambridge: Cambridge University Press, 1996. 149 ~ 172
  • 3Gustafson EJ, Crow TR. Modeling the effects of forest harvesting on landscape structure and the spatial distribution of cowbird brood parasitism.Landscape Ecol., 1994, 9:237 ~ 248
  • 4Gustafson E J, Crow TR. Simulating the effects of alternative forest management strategies on landscape structure. J. Environ. Manage., 1996,46:77~94
  • 5Gustafson EJ, Crow TR. HARVEST: linking timber harvesting strategies to landscape patterns. In: Klopatek JM, Gardner RH (Eds.).Landscape Ecological Analysis: Issues and Application. New York: Springer-Verlag, 1999. 309 ~ 332
  • 6Mladenoff DJ, Host GE, Boeder J, et al. LANDIS: a spatial model of forest landscape disturbance, succession and management. In: Goodchild MR, Steyaert LT, Parks BO(Eds. ). GIS and Environmental Modeling: Progress and Research Issues. Fort Collins: GIS World Books, 1996. 175~ 180
  • 7Mladenoff DJ, He HS. Design and behavior of LANDIS, an object-oriented model of forest landscape disturbance and succession. In: Mlandenoff DJ, Baker WL (Eds.). Advances in Spatial Modeling of Forest Landscape Change: Approaches and Applications. Cambridge: Cambridge University Press, 1999. 1 ~ 13
  • 8Urban DL, Acevedo MF, Garman SL. Scaling fine-scale processes to large scale patterns using models derived from models: meta-models. In:Mladenoff DJ, Baker WL (Eds.). Spatial Modeling of Forest Landscape Change: Approaches and Applications. Cambridge: Cambridge University Press, 1999. 70 ~ 98
  • 9Wallin DO, Swanson FJ, Marks B. Landscape pattern response to changes in pattern generation rules: land-use legacies in forestry. Ecol. Appl.,1994, 4:569~580
  • 10ESRI. Using ArcGISTM Geostatistical Analyst. USA,CA,Redlands:ESRI InC. 2001

同被引文献218

引证文献11

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部