摘要
本文引入弱交换po-半群的概念,研究这类半群到其Archimedean子半群的半格分解,得到了这类半群类似于具平凡序的弱交换半群的一个特征,由此在更一般的情形下回答了Kehayopulu在[1]中提出的一个问题,并作为推论得到弱交换poe-半群和具平凡序的弱交换半群的已知结果.
In this paper we intruduce the concept of weakly commutative po-semigroups, we initiate the Study of the scmilattice decompositions of this type of semigroups into their archimedean subsemigroups and give a characterization of such semigroups analogous to that of weakly commutative semigroups without order. As a result. a problem raised by Kehayopulu in [1] is answered in more general case, and the known results on weakly commutahve poe-semigroups and weakly commutativc senigroups without order are obtained.
出处
《纯粹数学与应用数学》
CSCD
1994年第2期59-63,共5页
Pure and Applied Mathematics
基金
国家自然科学基金
关键词
弱交换PO半群
半群
弱交换半群
半格同余
Po-semigroups
Poe-semigroups
Weakly commutative Po-semigroups
Archimedean subsemigroups
Semilattice congruence