期刊文献+

推力矢量飞机自适应控制系统仿真平台研究 被引量:1

The Study of Self-Adaptive Flight Control System for Aircraft With Thrust Vector and Simulation Platform
下载PDF
导出
摘要 研究了具有自修复功能的推力矢量飞机自适应控制系统的结构功能特点,研究了RHO优化控制算法实现在线控制器设计,利用MSLS辨识算法实现在线飞行参数辨识和等价空间算法、传感器信息融合技术和概率统计理论实现FDI算法。并且根据系统各个部分的算法,采用面向对象技术语言VC++6.0和三维图形语言OpenGL开发了仿真平台,利用仿真平台实时演示了飞机存在舵面故障情况下的飞行控制系统运行仿真,解决了飞机飞行过程中存在舵面损伤和气动参数变化的问题,该仿真平台可以根据需求进行飞机故障加载,具备完备的推力矢量飞机自适应控制系统仿真功能。 Architectural and functional features of a self-adaptive flight control system with self-repair function for aircraft with thrust vector are discussed. The on-line controller design is conducted using the RHO optimal algorithm, the on-line flight parameter identification is implemented using the MSLS algorithm, and a FDI algorithm is developed using global parity space method, sensor data fusion and probability theory. Also, a simulation platform is developed using the OOP language VC++6.0 and three-dimentional graphics language Open GL. A real-time reconfiguration demonstration of the flight control system in occurren of control surface failures is run on the simulation platform and shows problems of in-flight control surface damage and aerodynamic parameter variation can be addressed by the self-adaptive flight control system.The real time simulation suggests that failure loading can be conducted, as required,on the simulation platform and the platform provides real time simulation capabilities for adaptive flight control systems for aircraft with thrust vector.
出处 《飞机设计》 2005年第2期59-63,共5页 Aircraft Design
关键词 推力矢量飞机 自适应控制 仿真平台 MSL5辨识算法 飞行参数 aircraft with thrust vector self-adaptive control system platform
  • 相关文献

参考文献2

二级参考文献6

  • 1赵震炎 肖业伦.Dryden大气紊流模型的数字仿真技术[J].航空学报,1986,7(5).
  • 2葛彤.自修复飞行控制系统研究[M].西安:西北工业大学,1996..
  • 3薛定宇,控制系统计算机辅助设计.MATLAB语言及应用,1996年
  • 4葛彤,学位论文,1996年
  • 5肖业伦,飞行器运动方程,1987年
  • 6赵震炎,航空学报,1986年,7卷,5期

共引文献1

同被引文献28

  • 1秦丽,张文栋,潘峰.大攻角飞行载体运动学建模的四元数方法研究[J].中北大学学报(自然科学版),2006,27(3):276-279. 被引量:5
  • 2单甘霖,梅卫,王春平.联合目标跟踪与分类技术的进展及存在问题[J].兵工学报,2007,28(6):733-738. 被引量:13
  • 3Powell G, Marshall D. Joint Tracking and Classification of Nonlinear Trajectories of Multiple Objects Using the Transferable Belief Model and Multi-Sensor Fusion Framework [C]// Information Fusion 2005 7th International Conference on 25-28, 2005 ; 1524-1531.
  • 4Chen H M, Ruan Y H. Joint Target Recognition and Tracking Using Class Specific Features. Signals, Systems and Computers [C]//Conference Record of the Thirty-Eighth Asilomar Conference on. 7-10,2004 : 2101-2105.
  • 5Vercauteren T, Guo D,Wang X D. Joint Multiple Target Tracking and Classification in Collaborative Sensor Networks [ J ]. Selected Areas in Communications, IEEE Journal on April, 2005: 714-723.
  • 6Bashir F, Qu W, Khokhar A, et al. HMM-Based Motion Recognition System Using Segmented PCA. Image Processing [C]// 2005. ICIP 2005. IEEE International Conference in 2005:1288-1291.
  • 7Secmen M, Turhan S G, Hizal A. Extraction of Target Poles from Electromagnetic Scatter Signals by using Page Distribution for Target Recognition [C]// Signal Processing and Communications Applications Conference, 2005. Proceedings of the IEEE 13th. 16-18,2005..99-502.
  • 8Xue X R,Zeng Q M,Zhao R C. A New Method of SAR Image Target Recognition based on SVM [C]// IGARSS'05. Proceedings. 2005 IEEE International. 25-292,2005 : 4718-4721.
  • 9Gustafsson F, Gunnarsson F. Particle Filters for Positioning, Navigation, and Tracking. Signal Processing [J]. IEEE Transactions on [See Also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2002 : 425-437.
  • 10Hue C, Le Cadre, J.-P, Perez P. A Particle Filter to Track Multiple Objects [C]// Multi-Object Tracking 2001. Proceedings. 2001 IEEE Workshop on. 8,2001:61-68.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部