摘要
利用动力系统的Hopf分支理论来研究耦合非线性波方程周期行波解的存在性和稳定性· 应用行波法把一类耦合非线性波方程转换为三维动力系统来研究。
By using the bifurcation theory of dynamical systems to the coupled nonlinear wave equations,the existence and stability of periodic wave solutions by Hopf bifurcations are obtained. Theory of travelling wave was applied to transform a kind of the coupled nolinear wave equations into three_dimension dynamical systems.Under different parametric conditions, various sufficient conditions to guarantee the existence and stability of the above solutions are given.
出处
《应用数学和力学》
EI
CSCD
北大核心
2005年第7期770-778,共9页
Applied Mathematics and Mechanics
关键词
行波解
HOPF分支
非线性波方程
travelling wave solution
Hopf bifurcation
nonlinear wave equation