期刊文献+

一类耦合非线性波方程的行波解分支

Bifurcations of Travelling Wave Solutions for a Coupled Nonlinear Wave System
下载PDF
导出
摘要  利用动力系统的Hopf分支理论来研究耦合非线性波方程周期行波解的存在性和稳定性· 应用行波法把一类耦合非线性波方程转换为三维动力系统来研究。 By using the bifurcation theory of dynamical systems to the coupled nonlinear wave equations,the existence and stability of periodic wave solutions by Hopf bifurcations are obtained. Theory of travelling wave was applied to transform a kind of the coupled nolinear wave equations into three_dimension dynamical systems.Under different parametric conditions, various sufficient conditions to guarantee the existence and stability of the above solutions are given.
出处 《应用数学和力学》 EI CSCD 北大核心 2005年第7期770-778,共9页 Applied Mathematics and Mechanics
关键词 行波解 HOPF分支 非线性波方程 travelling wave solution Hopf bifurcation nonlinear wave equation
  • 相关文献

参考文献6

  • 1房少梅,郭柏灵.一类广义耦合的非线性波动方程组时间周期解的存在性[J].应用数学和力学,2003,24(6):595-604. 被引量:3
  • 2Chow S N,Hale J K. Method of Bifurcation Theory[M]. New York: Springer-Verlag, 1981.
  • 3Debnath L. Nonlinear Partial Differential Equations for Scientists and Engineers [M]. Boston:Birkhauser, 1997.
  • 4Guckenheimer J , Holmes P J . Nonlinear Oscillations , Dynamical Systems and Bifurcations of Vector Fields [M]. New York: Springer-Verlag, 1983.
  • 5Hassard B D, Wan Y H. Bifurcation formulae derived from center manifold theory [J]. Journal of Mathematical Analysis and Applications, 1978,63(2) :297-312.
  • 6Hassard B D, Kazarinoff N D,Wan Y H. Theory and Applications of Hopf Bifurcation [M] .London:Cambridge University Press, 1981.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部