期刊文献+

非线性发展方程的小模板简化Padé格式 被引量:6

Small-Stencil Padé Schemes to Solve Nonlinear Evolution Equations
下载PDF
导出
摘要  在有理逼近的紧致格式的理论基础上,采用特别的统一的Pad啨逼近形式,构造了针对高阶非线性发展方程的、简单小模板的差商格式· 不仅保持了格式的四阶精度,而且还可以采用追赶法求解得到的3对角矩阵,或者采用三阶Runge_Kutta法直接求解积分· 计算效果通过多种算例表明是十分令人满意的· 相对于其他差分格式。 A set of small-stencil new Padé schemes with the same denominator are presented to solve high_order non_linear evoltuion equations.Using this scheme,the fourth_order precision cannot only be kept,but also the final three_diagonal discrete systems are solved by simple Doolittle methods,or ODE systems by Runge_Kutta technique.Numerical samples show that the schemes are very satisfactory.And the advantage of the schemes is very clear compared to other finite difference schemes.
出处 《应用数学和力学》 EI CSCD 北大核心 2005年第7期801-809,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10371118 90411009) 中国科学技术大学火灾科学国家重点实验室基金资助项目 北京计算物理实验室基金资助项目
关键词 发展方程 紧致格式 PADE逼近 节点模板 孤立子 evolution equation compact scheme Padé scheme node stencil soliton
  • 相关文献

参考文献9

  • 1Kahan W, LI Ren-chang. Unconventional schemes for a class of ordinary differential equations with applications to the Korteweg-de Vries equation[J]. J Math Phys, 1997,134(6) :316-331.
  • 2Gardner L R T, Gardner G A. Solitary waves of regularised long-wave equation [J]. J Math Phys,1990,91:441-459.
  • 3Lele S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992,103:16-42.
  • 4Kobayashi M H. On a class of Pade finite volume methods[J] . Journal of Computational Physics,1999,156(1): 137-180.
  • 5Hixon R. Prefactored small-stencil compact schemes [J]. Journal of Computational Physics , 2000,165(2): 522-541.
  • 6Carpenter M H. Methodology and application to high-order compact schemes[J]. Journal of Computational Physics, 1994,111: 220-236.
  • 7Goedheer W J , Potters J H H M. A compact finite scheme on a non-equidistant mesh[J] . Journal of Computational Physics, 1985,61: 269-279.
  • 8Ganosa J, Gazdag J. The Korteweq-de Vries-Burgers equation [J]. Journal of Computational Physics, 1977,23:293-403.
  • 9刘儒勋 舒其望.计算流体力学的某些新方法[M].北京:科学出版社,2003..

同被引文献20

  • 1刘儒勋,吴玲玲.SMALL-STENCIL PAD SCHEMES TO SOLVE NONLINEAR EVOLUTION EQUATIONS[J].Applied Mathematics and Mechanics(English Edition),2005,26(7):872-881. 被引量:2
  • 2XU Zhen-li LIU Ru-xun.A HIGH-ORDER PAD SCHEME FOR KORTEWEG-DE VRIES EQUATIONS[J].Journal of Hydrodynamics,2005,17(6):654-659. 被引量:2
  • 3Carpenter M H, Gottlieb D, Abarbanel S. The stability of numerical boundary treatments for compact high-order finite-difference schemes[J]. Journal of Computational Physics, 1993,108(2):272- 295.
  • 4Lele S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992,103( 1 ) : 16-42.
  • 5Chu P C, FAN Chen-wu. A three-point combined compact difference scheme[J]. Journal of Computational Physics, 1998,140(2) :370-399.
  • 6Mahesh K. A family of high order finite difference schemes with good spectral resolution[ J]. Journal of Computational Physics, 1998,145(1) : 332-358.
  • 7Hixon R. Prefactored small-stencil compact schemes[ J]. Journal of Computational Physics,2000, 165(2) : 522-541.
  • 8Tolstykh A I, Lipavsldi M V. On performance of methods with third-and fifth-order compact upwind differencing[J]. Journal of Computational Physics, 1998,140(2 ):205-232.
  • 9MA Yan-wen, FU De-xun, Kobayashi N, et al. Numerical solution of the incompressible Navier- Stokes equations with an upwind compact difference scheme[J]. International Journal for Numericol Methods in Fluids , 1999,30(5) :509-521.
  • 10MA Yan-wen, FU De-xun. Analysis of super compact finite difference method and application to simulation of vortex-shock interaction [J].International Journal for Numerical Methods in Fluids,2001,36(7) :773-805.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部