摘要
在拉格朗日力学控制系统的仿射联络框架下,基于Sussmann对有限维流形上一般仿射非线性控制系统的能控性讨论,将简单力学控制系统短时间局部位形能控的一个可计算的充分条件推广到迷向耗散的系统上,并给出系统是平衡点能控的一个充分条件,其中,系统的拉格朗日函数为动能减势能· 在问题的讨论中,系统的能控李代数的向量场李括号运算,以及与系统位形流形的Levi_Civita联络相关的对称积起了重要作用· 尽管势能项会使系统的位形能控性讨论复杂化。
Within the affine connection framework of Lagrangian control systems, based on the results of Sussmann on controllability of general affine control systems defined on a finite-dimensional manifold, a computable sufficient condition of configuration controllability for the simple mechanical control systems was extended to the case of systems with strictly dissipative energy terms of linear isotropic nature, and a sufficient condition of equilibrium controllability for the systems was also given, where Lagrangian is kinetic energy minus potential energy. Lie bracketting of vector fields in controllable Lie algebra, and the symmetric product associated with Levi-Civita connection show virtues in the discussion. Liouville vector field simplified the computation of controllable Lie algebra for the systems, although the terms of potential energy complicated the study of configuration controllability.
出处
《应用数学和力学》
EI
CSCD
北大核心
2005年第7期826-832,共7页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10171081)
2005年天津市自然科学基金资助
关键词
力学
能控性
仿射联络
对称积
迷向耗散
mechanics
controllability
affine connection
symmetric product
isotropic dissipation