期刊文献+

非零势能的耗散力学控制系统的位形能控性

Configuration Controllability for Non-Zero Potential Mechanical Control Systems With Dissipation
下载PDF
导出
摘要  在拉格朗日力学控制系统的仿射联络框架下,基于Sussmann对有限维流形上一般仿射非线性控制系统的能控性讨论,将简单力学控制系统短时间局部位形能控的一个可计算的充分条件推广到迷向耗散的系统上,并给出系统是平衡点能控的一个充分条件,其中,系统的拉格朗日函数为动能减势能· 在问题的讨论中,系统的能控李代数的向量场李括号运算,以及与系统位形流形的Levi_Civita联络相关的对称积起了重要作用· 尽管势能项会使系统的位形能控性讨论复杂化。 Within the affine connection framework of Lagrangian control systems, based on the results of Sussmann on controllability of general affine control systems defined on a finite-dimensional manifold, a computable sufficient condition of configuration controllability for the simple mechanical control systems was extended to the case of systems with strictly dissipative energy terms of linear isotropic nature, and a sufficient condition of equilibrium controllability for the systems was also given, where Lagrangian is kinetic energy minus potential energy. Lie bracketting of vector fields in controllable Lie algebra, and the symmetric product associated with Levi-Civita connection show virtues in the discussion. Liouville vector field simplified the computation of controllable Lie algebra for the systems, although the terms of potential energy complicated the study of configuration controllability.
出处 《应用数学和力学》 EI CSCD 北大核心 2005年第7期826-832,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10171081) 2005年天津市自然科学基金资助
关键词 力学 能控性 仿射联络 对称积 迷向耗散 mechanics controllability affine connection symmetric product isotropic dissipation
  • 相关文献

参考文献10

  • 1Nijmeijer H, van der Schaft A J. Nonlinear Dynamical Control Systems [M]. New York-Heidelberg:Springer-Verlag, 1990, 349-392.
  • 2Murray R M. Nonlinear control of mechanical systems: a lagrangian perspective[J]. Annual Reviews in Control, 1997,21(2) :31-42.
  • 3Lewis A D, Murray R M. Configuration controllability of simple mechanical control systems[J]. SIAM J Control Optimization, 1997,35(3): 766-790.
  • 4Lewis A D. Aspects of geometric mechanics and control mechanical systems [D]. Ph D thesis,Pasadena: California Institute of Technology, CA, 1995,49-70.
  • 5Sussmann H J. A general theorem on local controllability[J]. SIAM J Control Optimization, 1987,25(1):158-194.
  • 6Lewis A D, Murray R M. Decompositions of control systems on manifolds with an affine connection [J]. Systems Control Letter, 1997,31(1):199-205.
  • 7Lewis A D. Simple mechanical control systems with constraints[J]. IEEE Transactions on Automatic Control,2000,45(8): 1420-1436.
  • 8Monforte J C. Geometric Control and Numerical Aspects of Nonholonomic Systems [M]. Lecture Notes in Mathematics 1793,Berlin-Heidelberg:Springer-Verlag,2002,194-198.
  • 9Vela P A, Morgansen K A, Burdick J W. Second order averaging methods and oscillatory control of underactuated mechanical systems[A]. In:IEEE American Control Conference[C], 2000, 4672-4677.
  • 10Abraham R,Marsden J E,Ratiu T. Manifolds, Tensor Analysis, and Applications[M].2nd ed. Applied Mathematical Sciences 75, New York:Springer-Verlag, 1988,157-193.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部