期刊文献+

非线性扰动Klein-Gordon方程初值问题的渐近理论

Asymptotic Theory of Initial Value Problems for Nonlinear Perturbed Klein-Gordon Equations
下载PDF
导出
摘要  在二维空间中研究一类非线性扰动Klein_Gordon方程初值问题解的渐近理论.首先利用压缩映象原理,结合一些先验估计式及Bessel函数的收敛性,根据Klein_Gordon方程初值问题的等价积分方程,在二次连续可微空间中得到了初值问题解的适定性;其次,利用扰动方法构造了初值问题的形式近似解,并得到了该形式近似解的渐近合理性;最后给出了所得渐近理论的一个应用。 The asymptotic theory of initial value problems for a class of nonlinear perturbed Klein_Gordon equations in two space dimensions is considered. Firstly, using the contraction mapping principle, combining some priori estimates and the convergence of Bessel function, the well_posedness of solutions of the initial value problem in twice continuous differentiable space was obtained according to the equivalent integral equation of initial value problem for the Klein_Gordon equations. Next, formal approximations of initial value problem was constructed by perturbation method and the asymptotic validity of the formal approximation is got. Finally, an application of the asymptotic theory was given, the asymptotic approximation degree of solutions for the initial value problem of a specific nonlinear Klein_Gordon equation was analyzed by using the asymptotic approximation theorem.
作者 甘在会 张健
出处 《应用数学和力学》 EI CSCD 北大核心 2005年第7期833-839,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10271084)
关键词 KLEIN-GORDON方程 适定性 渐近理论 形式近似解 应用 Klein_Gordon equations well_posedness asymptotic theory formal approximations application
  • 相关文献

参考文献9

  • 1Van Horssen W T. Asymptotics for a class of semilinear hyperbolic equations with an application to a problem with a quadratic nonlinearity[J]. Non Anal TMA, 1992,19(6) :501-530.
  • 2Van Horssen W T, Van Der Burgh A H. On initial boundary value problems for weakly semilinear telegraph equations. asymptotic theory and application[J]. SLAM J Appl Math, 1988,48(4):719-736.
  • 3WANG Bao-xiang. On existence and scattering for critical and subcritical nonlinear Klein-Gordon equations in Hs[J]. Nonlinear Anal TMA, 1998,31(5/6) :573-587.
  • 4Pecher H.Lp-Abschatzungen and klassiche Losungen fur nichtlineare Wellengeichungen[J]. I Math Z, 1976,150(2): 159-183.
  • 5Kapitanskii L V. Weak and yet weak solutions of semilinear wave equations[J]. Comm Partial Diff Equations, 1994,19(7): 1629-1676.
  • 6Pecher H. Nonlinear small data scattering for the wave and Klein-Gordon equations [J]. Math Z,1984,185(3) :261-270.
  • 7Pecher H. Low energy scattering for nonlineaar Klein-Gordon equations[ J]. J Functional Anal, 1985,63(1):101-122.
  • 8Guenther Ronald B, Lee John W. Partial Differential Equations of Mathematical Physics and Integral Equations [M] .New Jersey: Prentice Hall, 1988.
  • 9Koji Kubota. Existence of a global solution to semilinear wave equations with initial data of noncompact support in low space dimensions[J]. Hokkaido Math, 1993,22(1):123-180.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部