期刊文献+

基于k-means聚类的无导词义消歧 被引量:16

An Unsupervised Approach to Word Sense Disambiguation Based on HowNet
下载PDF
导出
摘要 无导词义消歧避免了人工词义标注的巨大工作量,可以适应大规模的多义词消歧工作,具有广阔的应用前景。这篇文章提出了一种无导词义消歧的方法,该方法采用二阶context构造上下文向量,使用k-means算法进行聚类,最后通过计算相似度来进行词义的排歧.实验是在抽取术语的基础上进行的,在多个汉语高频多义词的两组测试中取得了平均准确率82·67%和80·87%的较好的效果。 An unsupervised WSD(word sense disambiguation) can avoid big labor cost and it is possible to adjust to deal with large-scale ,so WSD has extensive applications in many fields. This paper presents an unsupervised approach which constructs context vector by means of second-order context, clustering by k-means and disambiguates by calculating the similarity. Our experiments are based on the extraction of term and average accuracy is 82.62% and 80.87% for 8 ambiguous words in open test by this method.
出处 《中文信息学报》 CSCD 北大核心 2005年第4期10-16,共7页 Journal of Chinese Information Processing
基金 国家语言文字应用委员会"十五"应用项目资助(ZDI105-43B) 湖北省自然科学基金资助项目(2001ABB012)
关键词 计算机应用 中文信息处理 词义消歧 HOWNET 二阶context K-MEANS聚类 computer application Chinese information processing word sense disambiguation HowNet second-order context clustering of k-means
  • 相关文献

参考文献10

二级参考文献33

  • 1李娟子.汉语词义消歧方法研究:博士论文[M].北京:清华大学,1999..
  • 2Bezdek J C, et al. Multiple-Prototype Classifier Design. IEEE Trans Syst Man Cybern, 1998, 24(9):67~79
  • 3Selim S Z. Ismail M A. K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality. IEEE Trans Pattern Analysis and Machine Intelligence,1984, PAMI-6(1): 81~87
  • 4Bradley P S, Fayyad U M. Refining Initial Points for K-Means Clustering. Advances in Knowledge Discovery and Data Mining.MIT Press, 1996
  • 5Raymond T. Ng, Han Jiawei. Efficient and Effective Clustering Methods for Spatial Data Mining. In: Proc. of the 20th VLDB Conf. Santiago, Chile, 1994
  • 6Selim S Z,Alsultan K. A Simulated Annealing Algorithms for the Clustering Problem. Pattern Recognition, 1991,24 (10): 1003 ~1008
  • 7李娟子,博士论文,1999年
  • 8Schutze, H. Word space. In: Stephen, J.H., Cowan, J., Giles, C.L., eds. Advances in Neural Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann, 1993. 895~902.
  • 9Salton, G., Buckley, B. Term-Weighting approaches in automatic text retrieval. Information Processing and Management, 1988,24(5):513~523.
  • 10Miller, G.A., Charles, W. Contextual Correlates of Semantic Similarity. Language and Cognitive Processes, 1991,6(1):1~28.

共引文献198

同被引文献219

引证文献16

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部