期刊文献+

列联表规整化对关联规则挖掘算法的改进

Improvement of Association Rule Mining Algorithm by Adopting Contingency Table Standardization
下载PDF
导出
摘要 关联规则挖掘算法是数据挖掘中非常重要的部分。通过对有趣度参数和列联表规整化的研究,进一步改进了对关联规则挖掘算法。并指出文献[1]中存在的对稳健统计概念的曲解。 Association rule mining algorithm is very important for the data mining, and can be used in various fields. This paper studies several interestingness and contingency table standardization to find a more robust algorithm instead of using support and confidence. It also points out the misunderstanding and wrong using to robust Statistics in the reference No. 1.
作者 张煜 傅家祥
出处 《贵州工业大学学报(自然科学版)》 CAS 2005年第3期67-71,共5页 Journal of Guizhou University of Technology(Natural Science Edition)
关键词 关联规则 数据挖掘 相关性 有趣度 稳健统计 association rule data mining correlation interestingness robust statistics
  • 相关文献

参考文献6

  • 1Pang-Ning Tan, Vipin Kumar,Jaideep Srivastava. KDD' 2002 Proceedings of the eighth ACM SIGKDD internatioal conference on Knowledge discovery and data mining table of contents[M]. New York: NY, USA. ACM Press,2002.
  • 2程继华,郭建生,施鹏飞.挖掘所关注规则的多策略方法研究[J].计算机学报,2000,23(1):47-51. 被引量:22
  • 3JiaweiHan MichelineKambr.数据挖掘-概念与技术[M].高等教育出版社,2001..
  • 4F. Mosteller. Association and estimation in congingency tables [J]. Journal of the American Statistical Association, 1968, (63):1-28.
  • 5DavidC Hoaglin F Mosteller JohnW Tukey.探索性数据分析[M].北京:中国统计出版社,1998..
  • 6周延泉,何华灿,李金荣.利用广义相关系数改进的关联规则生成算法[J].西北工业大学学报,2001,19(4):639-643. 被引量:3

二级参考文献11

  • 11,Agrawal R, Mannila H, Srikant R et al. Fast discovery of association rules. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California: AAAI/MIT Press, 1996. 307-328
  • 22,Brin S, Motwani R, Ullman J D et al. Dynamic itemset counting and implication rules for market basket data. In: Proc the ACM SIGMOD International Conference on Management of Data, Tucson, Arizon, 1997. 255-264
  • 33,Fayyad U M, Piatesky-shapiro G, Smyth P P. From data mining to knowledge discovery: an overview. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. California:AAAI Press, 1996. 1-36
  • 44,Piatesket-Shapiro G. Discovery, analysis, and presentation of strong rules. In: Piatesky-Shapiro G, Frawley W J eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California:AAAI/MIT Press, 1991. 229-238
  • 55,Silberschatz A, Stonebraker M, Ullman J. What makes patterns interesting in knowledge discovery sysstems. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6):970-974
  • 66,Symth P, Goodman R M. An information theoretic approach to rule induction from databases. IEEE Trans on Knowledge and Data Engineering, 1992, 4(4):301-316
  • 77,Toivonen H, Klemettinen M, Ronkainen P et al. Pruning and grouping discovered association rules. In: Mlnet Workshop on Statistics, Machine Learning, and Discovery in Database, Gete, Greece, 1995. 47-52
  • 8何华灿,泛逻辑学原理,2001年
  • 9欧阳为民,软件学报,1999年,26卷,3期,754页
  • 10Park J S,IEEE Trans Knowledge Data Engineering,1997年,9卷,5期,813页

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部