摘要
针对铸造厂的实际生产情况,应用数据挖掘中的决策树方法,通过对大量历史数据的分析,形成了一定的质量预测规则,并以此为基础,利用神经网络的方法,建立了生产过程质量预测模型,实现铸造产品生产质量预测系统。
According to the actualities in casting enterprises, the decision tree method in data mining is applied to form a set of quality prediction rules on the basis of a large number of historical data. Based on this, the neutral network method is used to establish a quality prediction model of production process and a quality prediction system of casting products.
出处
《武汉理工大学学报(信息与管理工程版)》
CAS
2005年第4期109-112,共4页
Journal of Wuhan University of Technology:Information & Management Engineering
关键词
神经网络
数据挖掘
实时质量预测
决策树
neutral network
data mining
real-time quality prediction
decision tree