期刊文献+

一类带多重核元集在线装箱问题

A Class of On-line Bin Packing Problems with Multiple Kernels
下载PDF
导出
摘要 本文讨论了一类在线变尺寸装箱问题,假定箱子的尺寸可以是不同的.箱子是在线到达的,仅当箱子到达后其尺寸才知道.给定一个带有核元的物品表及其上的核元关系图.我们的目标是要将表中元素装入到达的箱子中,保证任何箱子所装物品不互为核元,即所装物品对应的点所导出的子图是个空图,并使得所用的箱子总长最小.我们证明了该问题是NPHard的,并给出了基于图的点染色、图的团分解和基于背包问题的近似算法,给出了算法的时间复杂度和性能界. We consider a new class of on-line variable-sized bin packing problems as follows:suppose the size of bins are varied.Given a list of items and a kernel relation graph G on items.One needs to put them into bins which arrive on time one by one or batch by batch,and the induce graph of items packed into each bin must be empty graph.The objective is to minimize the total size of bins used.We propose some approximation algorithms based on graph coloring,graph clique partition and knapsack problem.We give the performance bound of proposed algorithms.
出处 《应用数学》 CSCD 北大核心 2005年第3期411-416,共6页 Mathematica Applicata
基金 国家自然科学基金资助项目(70221001 60373012)
关键词 装箱 在线算法 核元 性能界 Bin packing Kernel On-line algorithm Performance bound
  • 相关文献

参考文献9

  • 1Coffman E G,Jr,Garey M R,Johnson D S. Approximation algorithms for bin paeking:a survey[A]. Dorit S Hoehbaum editos. Approximation Algorithms for NP-Hard Problems [M]. Boston: PWS Publishing Company, 1995,46-93.
  • 2Karp R M. Reducibility among combinatorial problems[A]. Millr R E. Thatcher J W, eds. Complexity of Computations[M]. New York: Plenum, 1972,85 - 103.
  • 3Csirik J, Woeginger G J. On-line packing and covering problems[J]. Lecture Notes in Computer Science,1998,1442 : 147- 177.
  • 4Friesen D K, Langston M A. Variable sized bin packing[J]. SIAM. J. Comput, 1986,12 ( 1 ) : 222 - 230.
  • 5Zhang G. A new version of online variable-sized bin packing[J]. Disc. Appl. Math. , 1997,72:193- 197.
  • 6帅天平,王海明.箱子是在线到达的带核元变尺寸装箱问题[J].应用数学学报,2004,27(3):423-429. 被引量:4
  • 7Dieter Jungnickel. Graphs, Networks and Algorithms[M]. Berlin: Springer, 1993,242.
  • 8Dorit S Hochbaum, David B Shmoys. A unified approach to approximation algorithms for bottleneck problems[J]. Journal of ACM, 1986,33(3) :533-550.
  • 9David Pisinger, Paolo Toth. Knapsack problems[A]. Handbook of Combinatorial Optimization Vol. 1[C]. Boston:Kluwer Academic Publishers,1998,299-428.

二级参考文献8

  • 1Zhang G. Worst-case Analysis of the FFH Algorithm for Online Variable-sized Bin Packing. Computing, 1996, 56:165-172
  • 2Garey M R, Johnson D S. Computers and Intractability: a Guide to the Theory of NP-Completeness.Francisco: Freeman, 1979
  • 3Coffman E G, Garey Jr. M R, Johnson D S. Approximation Algorithms for bin Packing: A Survey.In: Dorit S. Hochbaum, editors. Approximation Algorithms for NP-Hard Problems, PWS Publishing Company, 1995, 46-93
  • 4Karp R M. Reducibility Among Combinatorial Problems. In: Complexity of Computations, Millr R E, Thatcher J W, eds, New York: Plenum, 1972, 85-103
  • 5Zhang G. A New Version of Online Variable-sized Bin Packing. Disc. Appl. Math., 1997, 72:193-197
  • 6Csirik J, Woeginger G J. On-line Packing and Covering Problems. Lecture Notes in Computer Science, 1998, 1442:147-177
  • 7Friesen D K, Langston M A. Variable Sized bin Packing. SIAM, J. Comput., 1986, 12(1): 222-230
  • 8张玉忠,杜东雷,林钧昌.关于P|s_(ij)|C_(max)问题的LPT算法[J].应用数学学报,1999,22(1):154-157. 被引量:10

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部