期刊文献+

对重金属和辐射污染的土壤和地下水的微生物修复 被引量:2

Microbial Bioremediation of Metal-and Radionuclide-Contaminated Soils and Groundwater
下载PDF
导出
摘要 由重金属和辐射产生的环境污染在世界范围内产生了一系列问题。利用特殊的微生物如金属还原和耐金属细菌对环境中的金属和辐射污染进行处理具有非常好的前景。现场的生物修复的成功应用将对清除污染环境中的重金属和辐射提供潜在方法。最近的研究还关注于了解在微生物群体内重金属和辐射对微生物的作用。生物毯和生物膜是在生物修复中具有代表性的两种微生物群落的机能。金属的种类和价态变化、转移过程以及微生物代谢作用是对金属和辐射生物修复的三种重要的组成部分。结合以上三方面,可以更好的了解自然中的微生物和生物修复过程之间的关系。 Contamination of environments by heavy metals and radionuclides has become a serious problem worldwide. The treatment of heavy metals and radionuclides in environments by specific microorganisms such as metal-reducing and metal- resistant bacteria has become promising technology. The successful application of in-situ bioremediation will provide potential ways to clean up heavy metals and radionuclides in contaminated environments. Recent studies also focus on understanding the effect of heavy metals and radionuclides on the microorganisms in the microbial community. Microbial mats and biofilms are two representative microbial communities functioning in bioremediation. Metal speciation and valence variation, transport processes, and microbial metabolism are three important ingredients for metal and radionuclide remediation. Combining these ingredients enables us to better understand the relationships between the naturally occurring microorganisms and bioremediation processes.
作者 叶祁 张传伦
出处 《高校地质学报》 CAS CSCD 北大核心 2005年第2期199-206,共8页 Geological Journal of China Universities
基金 funding form the U.S.Departmetn of Energy Financial Assistance Award DE.FC09.96R 18546 to the Unviersity of Georgia Research Foundation(C.L.Z.) supported by the Education Department of Jiangsu Province for Geo.chemistry discipline construction.
关键词 生物修复 重金属 辐射 转移 固定 Bioremediation heavy metals radionuclides mobilization immobilization
  • 相关文献

参考文献69

  • 1Ahuja P, Gupta P R and Saxene R K. 1999. Sorption and Desorption of Cobalt by Oscillatoria anguistissima. Curr. Microbiol. ,39: 49-52.
  • 2Barkay T, Miller S M and Summers A O. 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev., 27: 355-384.
  • 3Beer D and Kühl M. 2001. Interfacial microbial mats and biofilms. pp. 374-394 In: Boudreau B P and Jrgensen B B, eds. The Benthic Boundary Layer, Oxford University Press, New York.
  • 4Bender J, Rodriguez-Eaton S, Ekanemesang U M, and Phillips P. 1994. Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Appl. Environ. Microbiol., 60: 2311-2315.
  • 5Bender J, Duff M C, Phillips P and Hill M. 2000. Bioremediation and bioreduction of U(VI) in groundwaters by microbial mats. Environ. Sci. Technol., 15: 3235-3241.
  • 6Bender J and Phillips P. 2004. Microbial mats for multiple applications in aquaculture and bioremediation. Bioresource. Technol., 94: 229-238.
  • 7Blanco A, Sanz B, Llama M J and Serra J L. 1999. Biosorption of heavy metals to immobilised Phormidium laminosum biomass. J. Biotechnol., 69: 227-240.
  • 8Boone D R, Liu Y, Zhao Z J, Balkwill D L, Drake G T, Stevens T O and Aldrich H C. 1995. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol., 45: 441-448.
  • 9Boopathy R. 2000. Factors limiting bioremediation technologies. Bioresour. Technol., 74: 63-64.
  • 10Bosecker K. 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev., 20: 591-604.

同被引文献50

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部