期刊文献+

基于模式分解树的增量挖掘

Incremental Mining Based on Pattern Decomposing Tree
下载PDF
导出
摘要 数据挖掘具有广泛的应用,频繁模式发现是关联规则挖掘问题的重要组成部分。频繁模式的增量挖掘是一个挑战性的任务,已有的几种基于Apriori思想的方法,具有代价太高的弱点。本文提出了一个基于模式分解树,不需要扫描原数据库的增量挖掘算法。通过合理地组织候选项索引,可以取得较高的效率。 Data mining technique has its extensive applications. Frequent pattern finding is an important component of association rules mining problem. Incremental mining for frequent pattern is a challenging task. Some existing approaches which are all based on Apriori are too expensive .The paper presents an algorithm for incremental mining which is based on pattern decomposing tree and has no need for scanning old data base. By carefully organizing candidate item set, it can get good efficiency.
作者 殷凯 黄树成
出处 《常州工学院学报》 2005年第3期27-30,共4页 Journal of Changzhou Institute of Technology
关键词 模式分解 APRIORI 关联规则挖掘 增量挖掘算法 数据挖掘 组成部分 模式发现 频繁模式 挑战性 数据库 地组织 incremental mining association rule frequent pattern pattern decomposing tree
  • 相关文献

参考文献6

  • 1[2]Cheung D W, Han J, Ng V, Wong C Y. Maintenance of discovered association rules in large databases: an inremental updating technique [C]. In Proc. 1996Int. Conf. Data Engineering.New Orleans, L A. Feb, 1996. 106-114.
  • 2[3]Cheung D W, Lee SD, Kao B. A general incremental technique for maintaining discovered association rules [C]. In Proc. of the 15th Int. conf. on databases systems for advanced applications, Melbourne, Australia, April 1997.
  • 3[4]Lee S D, Cheung D W. Manitenace of discovered association rules: When to update [C] ? In Proc. SIGMOD′97 workshop on research issue on data mining and konwledge discovery,1997.
  • 4冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 5[6]Minghua Zhang Ben Kao Chi-Lap Yip. A comparsion study on algorithm for incremental update of frequent sequences [J].ICDM proceedings, 2002,555 - 559.
  • 6[7]V. Ganti and J. G. et al. Demon: Mining and monitoring evolving data [C]. In Proc. of the 16th Int'l Conf. on Data Engineering, San Diego, USA, 2000,439 -448.

共引文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部