期刊文献+

一类随机规划问题的近似Lagrange-Newton算法

Approximate Lagrange-Newton Algorithms for a Class of Stochastic Programming Problems
下载PDF
导出
摘要 通过利用MonteCarlo模拟方法近似目标函数及其一(二)阶信息,给出了带有补偿的随机二次规划问题的一个近似不可行Lagrange-Newton算法,并在依概率1条件下证明了它的全局收敛性和局部超线性收敛性。 By using Monte Carlo simulation-based approximate objective function and its first (second) derivative information, an infeasible approximate Lagrange-Newton algorithm is proposed for stochastic quadratic programs with recourse property. With probability one, the global convergence and local super-linear convergence of the algorithm are shown.[JP2]
出处 《山东科技大学学报(自然科学版)》 CAS 2005年第2期80-83,共4页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金资助项目(10171055)
关键词 Lagrange—Newton方法 随机二次规划 MONTE CARLO模拟 收敛性 Lagrange-Newton method stochastic quadratic programming Monte Carlo simulation convergence
  • 相关文献

参考文献9

  • 1John R. Birge and FranCois Louveaux. Introduction to Stochastic rogramming[ M ].Springe-Verlag, 1997.
  • 2Peter Kall and Stein W. Wallace. Stochastic Programming[M]. John Wiley & Sons, 1994.
  • 3A. Ruszczynski. Decomposition methods in stochastic programming[ J ]. Mathematrics Programming, 1997, 79 : 333 - 353.
  • 4Charles Rosa and Andrzej Ruszczynski. On augmented Lagrangian decomposition methods for multistage stochastic programs[ J ]. International Institute for Applied systems Analysis, Austria, 1994, 9 : 94 - 125.
  • 5O. Bahn, O. du Merle, J. L. Goffin, and J. P. Vial. A cutting plane method from analytic centers for stochastic programming[ J ]. SIAM Joural on Optimization, 1994,4 : 735 - 753.
  • 6X. Chen and R. s Womersley. A parallel inexact Newton method for stochastic programs with recourse[ J ]. Annals of Opration Research,1996,64:113 - 141.
  • 7X. Chen, L. Qi and R. S. Womersley. Newton's method for quadratic stochastic programs with recourse[J]. Journal of Computational and Applied Mathematics , 1995, 60:29 -46.
  • 8H. Niederreiter. Random Numgber Generation and Quasi-Monte Carlo methods[ C ]. Society for Industrial and Applied Mathematics, Philadelphia, 1992.
  • 9J. Spanier and E. H. Maize. Quasi-random methods estimating integrals using relatively small samples[J].SIAM Journal of Optimization, 1993,(3):751 -783.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部