期刊文献+

任意区间上的广义N范数与生成元 被引量:1

Generalized N-Norm and N-Generator on Any Interval
下载PDF
导出
摘要 在泛逻辑的不确定性推理中,N范数是一级运算的数理模型。论文目的是对现有泛逻辑中[0,1]区间上的N范数及其生成元进行扩展和完善,称任意[a,b]区间为广义区间,首先定义了广义区间[a,b]上的广义N范数与广义N性生成元;研究了它们的主要性质:封闭性、不动点、泛非性、偶等性等,给出了N性生成元的分类:常规N性生成元、奇异N性生成元、中心对称N性生成元;最后得到并证明了重要的广义N性生成元生成定理和广义N范数生成定理,从而为任意区间[a,b]上的分数逻辑的连接词运算模型提供了数学生成方法。 The mathematical results of this paper have already been used in computation on AI (artificial intelligence) logic reasoning in the first author's Ph.D dissertation at Northwestern Polytechnical University. In the process of uncertainties reasoning with universal logic, N-norm is the mathematical model of the first level operation. N-norm and N-generator are defined on interval [0,1]. We extend and improve the existing N-norm and TV-generator based on [0,1] interval in universal logic. Any interval [a, b] is called generalized interval here. We first give the definitions of generalized N-norm and generalized N-generator on generalized interval [a, b], then study their main properties: closeness, fixed point, universal not property, even equivalent property, etc. Then we give the classifications: normal TV-generator, strange TV-generator, center symmetrical TV-generator. Finally we prove the important generating theorem of generalized TV-generator and that of generalized TV-norm.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2005年第3期347-351,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金项目(60273087) 北京市自然科学基金项目(4032009
关键词 泛逻辑 广义区间 广义N范数 广义N性生成元 生成定理 Artificial intelligence Boundary conditions Functions Inverse problems Mathematical models Mathematical operators
  • 相关文献

参考文献5

  • 1何华灿,刘永怀,白振兴,艾丽蓉,王瑛.一级泛非运算研究[J].计算机学报,1998,21(S1):24-28. 被引量:6
  • 2Esteva F, Trillas E, Domingo X. Weak and Strong Negation Functions for Fuzzy Set Theory. The 11th Int Sym on Multiple-Valued Logic, 1981, 23~26.
  • 3Jenei S. New Family of Triangular Norms via Contrapositive Symmetrization of Residuated Implications. Fuzzy Sets and Systems, 2000, 110(2): 157~174.
  • 4Zadeh L A. Fuzzy Sets. Information and Control, 1965, 8(3): 338~357.
  • 5Hacck S. Deviant Logic and Fuzzy Logic beyond the Formalism. Chicago: The University of Chicago Press, 1996.

二级参考文献1

共引文献5

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部