期刊文献+

近140年中国、北半球和全球气温的标度律 被引量:9

Scaling Laws of Temperature Anomaly over Global, Northern Hemisphere, and China in Recent 140 Years
下载PDF
导出
摘要 运用非趋势波动分析方法,有效地消除数据中噪声和非平稳性质的影响,研究全球、北半球和中国近140年气温变化的长程幂律相关性。结果表明:全球气温、北半球气温和中国气温都有由交叉点划分的两个标度不变区域,可能对应两个不同的物理机制。其一,都可以表现出正长程相关的性质,而且全球气温的持续性最强,北半球次之,中国气温最弱;其二,全球气温和北半球气温还可以有几乎是1/f噪声性质的变化,中国气温则可表现出介于1/f和布朗噪声之间的行为。 To study the long range power-law correlations of themonthly average anomaliesover the global, Northern Hemisphere, and China in the recent 140 years,the detrended fluctuation analysis (DFA)method is applied in this paper, which can effectively eliminate noise and possible nonstationarities in the data. The preliminary results show that there exist two different scaling invariant ranges, divided by one crossover in the three temperature series, which may indicatetwo different underlyingphysical mechanisms. Fist of all, they all present the positive long range correlations, and the persistence of the global temperature is the strongest, while China weaker than Northern Hemisphere. Secondly, the global and Northern Hemisphere temperatures can nearly behavior like 1/f noise, and China temperature can show behaviors between 1/f noise and Brown noise.
出处 《高原气象》 CSCD 北大核心 2005年第3期410-414,共5页 Plateau Meteorology
基金 国家气象中心自筹经费项目(ZK2002ASZ07)资助
关键词 温度序列 气候变化 非趋势波动分析 长程相关性 Temperature series Climatic change Detrended fluctuation analysis Long range correlation
  • 相关文献

参考文献13

  • 1Shukla J. Predictability in the Midst of Cbaos: A scientific basis for climate forecasting[J]. Science, 1998, 282:728-731.
  • 2Peng C K, S V Buldyrev, S Havlin et al. Mosaic Organization of DNA Nucleotides[J]. Phys Rev E, 1994, 49: 1685-1689.
  • 3Kantelhardt J W, E K Bunde, H A Henio et al. Detecting long-range correlations with detrend ed fluctuation analysis[J]. Physica A, 2001, 295:441-454.
  • 4Kantelhardt J W, S A Zschiegner, E K Bunde et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316: 87-114.
  • 5Bunde E K, A Bunde, S Havlin et al. Analysis of daily temperature fluctuations[J]. Physica A, 1996, 231:393-396.
  • 6Pelletier J D, D L Turcotte. Long-range persistence in climatological and hydrological time series analysis, modeling and application to drought hazard assessment [J]. J Hydrology,1997, 203:198-208.
  • 7Bunde E K, A Bunde, S Havlin et al. Indication of a universal persistence law governing. Atmospheric variability[J]. Phys Rev Lett, 1998, 81:729-732.
  • 8Talkner P, R O Weber. Power spectrum and detrended fluctuation analysis: Application to daily temperature[J]. Phys Rev E, 2000, 62:150-160.
  • 9Govindan R B, D Vjushin, S Brenner et al. Long-range correlations and trends in global climate models: Comparison with real data[J]. Physica A, 2001, 294: 239-248.
  • 10Govindan R B, A Bunde, S Havlin et al. Volatility in atmospheric temperature variability[J]. Physica A, 2003,318:529-536.

同被引文献131

引证文献9

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部