期刊文献+

INEQUALITIES FOR MIXED INTERSECTION BODIES 被引量:3

INEQUALITIES FOR MIXED INTERSECTION BODIES
原文传递
导出
摘要 In this paper, some properties of mixed intersection bodies are given, and inequalities from the dual Brunn-Minkowski theory (such as the dual Minkowski inequality, the dual Aleksandrov-Fenchel inequalities and the. dual Brunn-Minkowski inequalities) are established for mixed intersection bodies.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第3期423-436,共14页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No.10271071).
关键词 Star body Mixed intersection body Dual mixed volume Spherical radon transform 恒星体 最大交叉体 双重混合体积 球面氡转换 积分模型
  • 相关文献

参考文献28

  • 1Bolker, E. D., A class of convex bodies, Trans. Amer. Math. Soc., 145(1969), 323-345.
  • 2Bourgain, J. & Lindenstrauss, J., Projection Bodies, Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1317, Springer, 1988, 250-270.
  • 3Busemann, H., A theorem on convex bodies of the Brunn-Minkowski type, Proc. Nat. Acad. Sci.,35(1949), 27-31.
  • 4Gardner, R. J., A positive answer to Busemann-Petty problem in three dimensions, Ann. of Math.,140(1994), 435-447.
  • 5Gardner, R. J., Geometric tomography and local stereology, Adv. Appl. Math., 30(2003), 397-423.
  • 6Gardner, R. J., Geometric Tomography, Cambridge University Press, New York, 1995.
  • 7Gardner, R. J., Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc.,342(1994), 435-445.
  • 8Gardner, R. J., Koldobsky, A. & Schlumprecht, T., An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math., 149(1999), 691-703.
  • 9Hardy, G. H., Littlewood, J. E. & Polya, G., Inequalities, Cambridge Univ. Press, Cambridge, 1959.
  • 10Koldobsky, A., Intersection bodies and the Busemann-Petty problem, C. R. Ac ad. Sci. Paris Ser. I Math., 325(1997), 1181-1186.

同被引文献7

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部