期刊文献+

SEMI-LINEAR SYSTEMS OF BACKWARD STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN R^n 被引量:2

SEMI-LINEAR SYSTEMS OF BACKWARD STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN R^n
原文传递
导出
摘要 This paper explores the diffeomorphism of a backward stochastic ordinary differential equation (BSDE) to a system of semi-linear backward stochastic partial differential equations (BSPDEs), under the inverse of a stochastic flow generated by an ordinary stochastic differential equation (SDE). The author develops a new approach to BSPDEs and also provides some new results. The adapted solution of BSPDEs in terms of those of SDEs and BSDEs is constructed. This brings a new insight on BSPDEs, and leads to a probabilistic approach. As a consequence, the existence, uniqueness, and regularity results are obtained for the (classical, Sobolev, and distributional) solution of BSPDEs.The dimension of the space variable x is allowed to be arbitrary n, and BSPDEs are allowed to be nonlinear in both unknown variables, which implies that the BSPDEs may be nonlinear in the gradient. Due to the limitation of space, however, this paper concerns only classical solution of BSPDEs under some more restricted assumptions.
作者 TANGSHANJIAN
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第3期437-456,共20页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No.10325101, No.101310310)the Science Foundation of the Ministry of Education of China (No. 20030246004).
  • 相关文献

参考文献37

  • 1Bally, V. & Matoussi, A., Weak solutions for SPDEs and backward doubly stochastic differential equations, J. Theoret. Probab., 14:1(2001), 125-164.
  • 2Bally, V. & Saussereau, B., A relative compactness criterion in Wiener-Sobolev spaces and application to semi-linear stochastic PDEs, J. Funct. Anal., 210:2(2004), 465-515.
  • 3Barles, G. & Lesigne, E., SDE, BSDE and PDE., Pitman Research Notes in Mathematics, Series 364,1997, 47-80.
  • 4Bensoussan, A., Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions, Stochastics, 9(1983), 169-222.
  • 5Bensoussan, A., Stochastic Control of Partially Observable Systems, Cambridge University Press,Cambridge, 1992.
  • 6Bismut, J. M., Analyse Convexe et Probabilités, Thèse, Université Paris Ⅵ, 1973.
  • 7Bismut, J. M., Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl.,44(1973), 384-404.
  • 8Bismut, J. M., Linear quadratic optimal stochastic control with random coefficients, SIAM J. Control & Optim., 14(1976), 419-444.
  • 9Bismut, J. M., Controle des systèmes linéares quadratiques, Applications de l'intégrale Stochastique,Séminaire de ProbabilitéⅫ, Lecture Notes in Mathematics 649, Berlin, Heidelberg, New York,Springer, 1978, 180-264.
  • 10Bismut, J. M., An introductory approach to duality in optimal stochastic control, SIAM Review,20(1978), 62-78.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部