期刊文献+

Preparation and properties of continuous Al-containing silicon carbide fibers 被引量:2

Preparation and properties of continuous Al-containing silicon carbide fibers
下载PDF
导出
摘要 Continuous SiC(OAl) fibers, named KD-A fibers, were prepared by the melt-spinning of ceramic precursor polyaluminocarbosilane, air-curing, and pyrolizing at 1 300 ℃. These fibers contained small amount of aluminum and 7%- 9% oxygen. The KD-A fibers were converted into sintered SiC(Al) fibers, named KD-SA, by sintering at 1 800 ℃. The fibers were characterized by chemical analysis, tensile strength test, SEM and XRD. The tensile strength, elastic modulus and diameter of the KD-A fibers are 2.6 GPa, 210 GPa, 12 - 14 μm, respectively. The KD-A fibers have higher thermal stability, more excellent oxidation resistance than the Nicalon fibers. The properties of the KD-A fibers have reached the level of Hi-Nicalon fibers. The tensile strength, elastic modulus and diameter of the KD-A fibers are 2.1 GPa, 405 GPa, 10 - 12 μm, respectively. The KD-SA fibers with nearly stoichiometric component have stable performance at high temperature, and better creep resistance than the Tyranno SA fibers. Continuous SiC(OAl) fibers, named KD-A fibers, were prepared by the melt-spinning of ceramic precursor polyaluminocarbosilane, air-curing, and pyrolizing at ~1300 ℃. These fibers contained small amount of aluminum and 7%-9% oxygen. The KD-A fibers were converted into sintered SiC(Al) fibers, named KD-SA, by sintering at ~1800 ℃. The fibers were characterized by chemical analysis, tensile strength test, SEM and XRD. The tensile strength, elastic modulus and diameter of the KD-A fibers are 2.6GPa, 210GPa, 12-14μm, respectively. The KD-A fibers have higher thermal stability, more excellent oxidation resistance than the Nicalon fibers. The properties of the KD-A fibers have reached the level of Hi-Nicalon fibers. The tensile strength, elastic modulus and diameter of the KD-A fibers are 2.1GPa, 405GPa, 10-12μm, respectively. The KD-SA fibers with nearly stoichiometric component have stable performance at high temperature, and better creep resistance than the Tyranno SA fibers.
出处 《中国有色金属学会会刊:英文版》 CSCD 2005年第3期510-514,共5页 Transactions of Nonferrous Metals Society of China
基金 Project(59972042)supportedbytheNationalNaturalScienceFoundationofChina
关键词 连续碳化硅光纤 聚铝碳硅烷 复合材料 高温分解 continuous silicon carbide fibers polyaluminocarbosilane polymer pyrolysis
  • 相关文献

参考文献3

二级参考文献35

  • 1LAINE R M, BABONNEAU F. Preceramic polymer routes to silicon carbide [J]. Chem Mater, 1993, 5: 260-279.
  • 2YAJIMA S, HAYASHI J, OKAMURA K. Pyrolysis of a polyborodiphenylsiloxane[J]. Nature, 1977, 266: 521-522.
  • 3BIROT M, PILLOT J P, DUNOGUES J. Comprehensive chemistry of polycarbosilane,polysilazane,and polycarbosilazane as precursors of ceramic [J]. Chem Rev, 1995, 95(5): 1 443-1 477.
  • 4YAJIMA S, HASEGAWA X, HAYASHI J, et al. Synthesis of continuous SiC fibers with high tensile strength and modulus [J]. J Mater Sci, 1978,13: 2 569-2 576.
  • 5CHOLLON G, ALDACOURROU B, CAPES L,et al. Thermal behaviour of a polytitanocarbosilane derived fibre with a low oxygen content: the tyranno loxe fibre [J]. J Mater Sci, 1998, 33: 901-911.
  • 6ISHIKAWA T, KOHTOK U, KUMAGAWA K. Production mechanism of polyzirconocarbosilane using zirconium (IV) acetylacetonate and its conversion of the polymer into inorganic materials [J]. J Mater Sci, 1998, 33: 161-166.
  • 7CAO F, LI X D, PENG P, et al. Structural evolution and associated properties on conversion from Si-C-O-Al ceramic fibers to Si-C-Al fibers by sintering [J]. J Mater Chem ,2002,12: 606-610.
  • 8ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al. High strength alkali resistant sintered SiC fibre stable to 2 200 ℃ [J]. Nature, 1998, 391: 773-774.
  • 9LAINE R M, BABONNEAU F. Preceramic polymer routes to silicon carbide [J]. Chem Mater, 1993, 5: 260-279.
  • 10BIROT M, PILLOT J P, DUNOGUES J. Comprehensive chemistry of polycarbosilane, polysilazane, and polycarbosilazane as precursors of ceramic [J]. Chem Rev, 1995, 95(5): 1 443-1 477.

共引文献31

同被引文献13

  • 1陈江溪,何国梅,何旭敏,夏海平.SiC陶瓷纤维高聚物先驱体的研究进展[J].功能材料,2004,35(6):679-682. 被引量:16
  • 2YAJIMA S, HAYASHI J, OMORI M, OKAMURA K. Development of a silicon carbide fibre with high tensile strength [J]. Nature, 1976, 261: 683-685.
  • 3BIROT M, PILLOT J P, DUNOGUES J. Comprehensive chemistry of polycarbosilanes, polysilazanes and polycarbosilazanes as precursors of ceramics [J]. Chem Rev, 1995, 95: 1443-1477.
  • 4ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, YAMAMURA T, NAGASAWA T. High-strength alkali-resistant sintered SiC fiber stable to 2200 ℃ [J]. Nature, 1998, 391: 773-775.
  • 5HASEGAWA Y, FENG C X, SONG Y C, TAN Z L. Ceramic fibers from polymer precursor containing Si-O-Ti bonds, Part II: Synthesis of various types of ceramic fibers [J]. J Mater Sci, 1991, 26: 3657-3664.
  • 6ISHIKAWA T. Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature [J]. Compos Sci Tech, 1994, 51: 135-144.
  • 7SUGIMOTO M, SHIMOO T, OKAMURA K, SEGUCH T. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: I, Evolved gas analysis [J]. JAm Ceram Soc. 1995, 78: 1013-1017.
  • 8TAKEDA M, SAKAMOTO J, IMAI Y, ICHIKAWA H. Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-Nicalon [J]. Compos Sci Tech, 1999, 59: 813-819.
  • 9TAKEDA M, URANO A, SAKAMOTO J, IMAI Y. Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S [J]. J Nucl Mater, 1998, 258-263: 1594-1599.
  • 10SUZUKI K, KUMAGAWA K, KAMIYAMA T, SHIBUYA M. Characterization of the medium-range structure of Si-AI-C-O, Si-Zr-C-O and Si-A1-C Tyranno fibers by small angle X-ray scattering [J]. J Mater Sci, 2002, 37:949- 953.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部