摘要
The hydrodynamic behavior of fine powders in jet-fluidized beds was studiednumerically and experimentally. The starting point of numerical simulation was the generalizedNavier-Stokes (N-S) equations for the gas and solids phases. The κ-ε turbulence model was used forhigh-speed gas jets in fluidized beds. Computation shows that a suitable turbulence model isnecessary to obtain agreement between the simulation and literature experimental data for ahigh-speed gas jet. The model was applied to simulating the fluidization of fine powders influidized beds with an upward or a downward air jet. An empirical cohesion model was obtained bycorrelating the cohesive force between fine particles using a cohetester. The cohesion model wasembedded into the two-fluid model to simulate the fluidization of fine powders in two-dimensional(2-D) beds. To study the fluidization behavior of fine and cohesive powders with a downward jet,experiments were performed in a 2-D bed. Agreement between the computed time-averaged porosity andmeasured data was obtained. With an upward jet in the bed center, the measured and computedporosities show a dilute central core, especially at very high jet velocities. Based on ourexperiments and computations, a downward jet located inside the bed is recommended to achieve bettermixing and contacting of gas and solids.
The hydrodynamic behavior of fine powders in jet-fluidized beds was studiednumerically and experimentally. The starting point of numerical simulation was the generalizedNavier-Stokes (N-S) equations for the gas and solids phases. The κ-ε turbulence model was used forhigh-speed gas jets in fluidized beds. Computation shows that a suitable turbulence model isnecessary to obtain agreement between the simulation and literature experimental data for ahigh-speed gas jet. The model was applied to simulating the fluidization of fine powders influidized beds with an upward or a downward air jet. An empirical cohesion model was obtained bycorrelating the cohesive force between fine particles using a cohetester. The cohesion model wasembedded into the two-fluid model to simulate the fluidization of fine powders in two-dimensional(2-D) beds. To study the fluidization behavior of fine and cohesive powders with a downward jet,experiments were performed in a 2-D bed. Agreement between the computed time-averaged porosity andmeasured data was obtained. With an upward jet in the bed center, the measured and computedporosities show a dilute central core, especially at very high jet velocities. Based on ourexperiments and computations, a downward jet located inside the bed is recommended to achieve bettermixing and contacting of gas and solids.
基金
supported by the National Natural Science Foundation of China(NNSFC,No.20476065)
the Scientific Re-search Foundation for the Retumed Overseas Chinese Scholars of State Education Ministry(SRF for ROCS,SEM)
Multi-Phase Reaction Laboratory(MPR)at the Institute of Process Engineering(IPE),Chinese Academy of Sciences(CAS).