期刊文献+

新型并行遗传算法及其在参数估计中的应用 被引量:6

A New Parallel Genetic Algorithm and its Application to Parameter Estimation
下载PDF
导出
摘要 基于极大似然法的参数估计实质上是一个复杂的非线性优化问题,传统的优化方法计算效率较低且容易陷入局部极值。该文将单纯形法与并行遗传算法相结合,提出了一种新的并行遗传算法,可以有效地防止搜索过程中的早熟现象。应用于系统初始状态未知时的参数估计问题,获得了满意的结果。 The parameter estimation based on the maximum likelihood method is a complicated nonlinear optimization problem actually.The traditional optimization algorithms are apt to be trapped into local minima,and the computation efficiencies are quite low.In this paper,a new parallel genetic algorithm combining the simplex method with the parallel genetic algorithm is proposed,which can prevent premature convergence effectively and improve the estimation precision and computation efficiency.The proposed algorithm is applied to the parameter estimation problem with unknown initial states of system and satisfactory results are obtained.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第19期50-52,共3页 Computer Engineering and Applications
关键词 初始状态 极大似然法 单纯形法 并行遗传算法 initial state,maximum likelihood,simplex method,parallel genetic algorithm
  • 相关文献

参考文献5

  • 1朱延功,崔平远,吴瑶华.参数估计中的系统初始状态确定[J].飞行力学,1997,15(3):35-41. 被引量:2
  • 2蔡萱三.最优化与最优控制[M].清华大学出版社,1992..
  • 3张彤,张华,王子才.浮点数编码的遗传算法及其应用[J].哈尔滨工业大学学报,2000,32(4):59-61. 被引量:56
  • 4Yu-Hsin Liu.Global Maximum Likelihood Estimation Procedure For Multinomial Probit Model Parameters.Transportation Research Part B 34,2000-08.
  • 5John Yen,Bogju Lee.A Simplex Genetic Algorithm Hybrid,Evolutionary Computation[C].ln:IEEE International Conference on, 1997-04.

二级参考文献5

  • 1[1] ZBIGNIEW MICHALEWICZ, CEZARY Z J, JACEK B K. A modified genetic algorithm for optimal control problems[J]. Computers Math Applic, 1992, 23(2): 83-94.
  • 2[2] JIM ANTONISSE. A new interpretation of schema notation that overturns the binary encoding constraint//. Proc 3rd Int Conf Genetic Algorithms[C]. 1989.
  • 3[3] GREFENSTETTE J J, BAKER J E. How genetic algorithms work: a critical look at lmplicit parallelism//. Proc 3rd nt Conf Genetic Algorithms[C]. 1989.
  • 4[4] DARRELL WHITLEY. The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best//. Proc 3rd Int Conf Genetic Algorithms[C]. 1989.
  • 5[5] SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on System Man and Cybernetics, 1994, 24(4): 656-667.

共引文献55

同被引文献31

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部