期刊文献+

入侵检测系统中有监督学习的特征选择方法 被引量:4

Feature Selection Method Based on Supervised Learning for Intrusion Detection System
下载PDF
导出
摘要 基于模式识别方法的入侵检测系统首先要解决的一个问题就是特征选择,该文依据数据分布和相关分析两方面,提出了一种基于有监督学习的特征选择方法。根据实验结果可以看出,该算法执行效果较好,且时间复杂性较低。 The first problem that needs to be solved in intrusion detection system based on pattern recognition method is feature selection. This paper proposes a method for feature selection in supervised learning depending on data distribution and correlation analysis. According to the experimental results, this algorithm performs well and it's time complexity is low.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第13期22-23,45,共3页 Computer Engineering
基金 教育部跨世纪人才基金资助重点科研项目(02029)
关键词 特征选择 相关分析 有监督学习 入侵检测 Feature selection Correlation analysis Supervised learning Intrusion detection
  • 相关文献

参考文献5

  • 1TheodoridisS.KoutroumbasK.Pattern Recognition[M].北京:机械工业出版社,2003—09..
  • 2吉小军,李世中,李霆.相关分析在特征选择中的应用[J].测试技术学报,2001,15(1):15-18. 被引量:27
  • 3Kwak N, Chong Ho. Input Feature Selection for Classification Problems[J]. IEEE Transaction on Neural Network,2002, 13(1):143-157.
  • 4Dong M, Kothari R. Feature Subset Selection Using A New Definition of Classifiabilitv[J]. Pattern Recognition Letters, 2003,24:1215-1225.
  • 5Morita M, Sabourin R,Bortolozzi F, et al.Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition. ICDAR', 2003, 2:666-670.

二级参考文献2

共引文献26

同被引文献24

  • 1张义荣,肖顺平,鲜明,王国玉.基于机器学习的入侵检测技术概述[J].计算机工程与应用,2006,42(2):7-10. 被引量:15
  • 2蒋盛益,李庆华.有指导的入侵检测方法研究[J].通信学报,2006,27(3):86-93. 被引量:5
  • 3李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 4Nizar Grira, Michel Crucianu, Nozha Boujemaa. Active semi- supervised fuzzy clustering[J]. Pattern Recognition, 2008(41) : 1834 - 1844.
  • 5Aljoscha Klose, Rudolf Kruse. Semi - supervised learning in knowledge discovery[ J ]. Fuzzy Sets and Systems, 2005 (149) : 209 - 233.
  • 6Frigui H, Krishnapuram R. Clustering by competitive agglomeration[ J ]. Pattern Recognition, 1997,30 (7) : 1109 - 1119.
  • 7XING Hong-jie,HU Bao-gang.An adaptive fuzzy c-means clustering-based mixtures of experts model for unlabeled data classification[J].Neurocomputing,2008,71 (416):1008-1021.
  • 8GRIRA N,CRUCIANU M,BOUJEMAA N.Active semi-supervised fuzzy clustering[J].Pattern Recognition,2008,41 (5):1851-1861.
  • 9KLOSE A,KRUSE R.Semi-supervised learning in knowledge discovery[J].Fuzzy Sets and Systems,2005,149 (1):209-233.
  • 10FRIGUI H,KRISHNAPURAM R.Clustering by competitive agglomeration[J].Pattern Recognition,1997,30(7):1109-1119.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部